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Varieties of Relevant S5

Abstract. In classically based modal logic, there are three common con-
ceptions of necessity, the universal conception, the equivalence relation con-
ception, and the axiomatic conception. They provide distinct presentations
of the modal logic S5, all of which coincide in the basic modal language.
We explore these different conceptions in the context of the relevant logic R,
demonstrating where they come apart. This reveals that there are many
options for being an S5-ish extension of R. It further reveals a divide between
the universal conception of necessity on the one hand, and the axiomatic
conception on the other: The latter is consistent with motivations for rel-
evant logics while the former is not. For the committed relevant logician,
necessity cannot be the truth in all possible worlds.

Keywords: relevant modal logic; S5; universal necessity; conceptions of
necessity

1. Introduction

According to a familiar idea, the universal conception of necessity, ne-
cessity is truth in all possible worlds, giving the logic that has become
known as S5. The universal conception takes all worlds to be equally
possible, which is a special case of partitioning the set of worlds into
equivalence classes, in fact it is the case in which there is only a single
equivalence class. This equivalence conception of necessity permits situ-
ations in which the space of possibilities is partitioned into equivalence
classes, and necessity at a particular world is truth in all worlds in its
equivalence class. Both of these conceptions are equally well axiomatized
by a standard Hilbert-style axiomatization.1 This axiomatic conception

1 This is not to say that a Hilbert-style axiomatization is the only way to approach
S5 proof-theoretically. There are other options, such as [Braüner, 2000; Indrzejczak,
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generates the same logic as the other two. These conceptions provide
equivalent presentations of the logic S5 and they offer three presentations
of the logic: two model-theoretic and one proof-theoretic [see Blackburn
et al., 2002; Garson, 2018].

• Kripke models with a universal accessibility relation
• Kripke models with an accessibility relation that is an equivalence

relation
• Axiomatic form

The situation is different when one changes the setting from classically
based modal logic to relevant modal logic, that is, when the base logic
is changed from classical logic to the relevant logic R.2 Although the
point is a general one, in this paper, I will focus on showing that this
equivalence does not hold when R is used as the base logic. This means
that there are multiple options for being an S5-ish extension of R.3 It
further reveals a divide between the universal conception of necessity on
the one hand, and the axiomatic conception on the other: The latter is
consistent with motivations for relevant logics while the former is not.4

1996, 1998; Mints, 1992; Ohnishi and Matsumoto, 1957; Poggiolesi, 2008; Prawitz,
1965; Restall, 2007] for example. See [Bednarska and Indrzejczak, 2015] for a survey
of some options, and see [Indrzejczak, 2010] or [Poggiolesi, 2011] for general overviews.
The Hilbert-style axiomatization is better suited to the aims of this paper.

It should be noted that there is still some subtlety in identifying the proof-
theoretic conceptions of S5, which would be better grouped into equivalence classes
inducing the same consequence relation. For more on this latter point, see [Porte,
1981]. I would like to thank Lloyd Humberstone for the reference and for discussion
of this point.

2 For more on relevant logics, see [Bimbó, 2007; Dunn and Restall, 2002] for
overviews. For more in-depth treatments, see [Anderson and Belnap, 1975; Anderson
et al., 1992; Brady, 2003; Mares, 2004; Read, 1988; Restall, 2000; Routley et al., 1982].

3 Much work on relevant modal logics has focused on S4-ish logics. [Mares and
Meyer, 1993; Meyer, 1966; Meyer and Mares, 1993; Routley and Meyer, 1972] all
investigate S4-ish extensions of R. As noted by Anderson and Belnap [1975, ch. 1],
the logic E can define a kind of logical necessity, with �A defined as (A → A) → A, the
logic of which is similar to that of S4. S5-ish extensions, by comparison, have received
little attention. See [Mares and Standefer, 2017] for an investigation of different modal
analogues of E, including an S5-ish one.

4 Parks and Byrd [1989] discuss universal necessity, which they call “Leibnizian
necessity”, noting that there was a “feeling that the Leibnizian view of necessity is
incompatible with key tenets of relevance logic” (p. 180). The results below go some
way towards substantiating that sentiment. Thanks to Andrew Tedder for directing
me towards this article.
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For the committed relevant logician, necessity cannot be truth in all
possible worlds.

2. Background

In this section, I will present the standard (ternary relational) model
theory for relevant logics and provide an axiomatization of the main
logic to be considered. The basic relevant language, L, is built from a
countable set of atoms At and the connectives and constant in the set
{→, ∧, ∨, ∼, t}.

Definition 2.1. A ternary relational frame F is a quadruple 〈K, N, R,
∗〉, where K 6= ∅, N ⊆ K, R ⊆ K3, ∗ : K 7→ K, where

(B1) a ≤ b =Df ∃x ∈ N Rxab,
(B2) ≤ is a partial order,
(B3) a∗∗ = a,
(B4) a ≤ b only if b∗ ≤ a∗, and
(B5) if d ≤ a, e ≤ b, c ≤ f , and Rabc, then Rdef .

Define Rabcd=Df ∃x ∈ K(Rabx∧Rxcd) and Ra(bc)d=Df ∃x ∈ K(Raxd∧
Rbcx). An R-frame 〈K, N, R, ∗〉 is a ternary relational frame obeying the
following conditions

(F1) Rabc ⇒ Rac∗b∗

(F2) Rabc ⇒ Rbac
(F3) Rabcd ⇒ Rb(ac)d
(F4) Rabc ⇒ Rabbc

It is a consequence of (B2), in particular the reflexivity portion, together
with (B1) that the set of normal points, N , is non-empty.5

Definition 2.2 (Model). A model M is a pair 〈F, V 〉 consisting of an
R-frame F , 〈K, N, R, ∗〉, and a valuation function V : At 7→ ℘K such
that if a ∈ V (p) and a ≤ b, then b ∈ V (p). Such a model is said to be
built on F .

The valuation function is extended to a verification relation on the
whole language as follows.

• a 
 p iff a ∈ V (p)

5 The normal points, sometimes called ‘regular’ or ‘logical’, are used to define
validity below.
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• a 
 t iff a ∈ N
• a 
 ∼B iff a∗ 1 B
• a 
 B ∧ C iff a 
 B and a 
 C
• a 
 B ∨ C iff a 
 B or a 
 C
• a 
 B → C iff for all b, c ∈ K, if Rabc and b 
 B, then c 
 C

This provides us with the resources needed to define counterexamples
and validity.

Definition 2.3 (Counterexample, holding, validity). A model M is a
counterexample to a formula A iff for some a ∈ N , a 1 A. The point a
is said to be a counterexample point.

A formula A holds in model M iff M is not a counterexample to A.
A formula A is valid in a frame F iff no model built on F is a

counterexample to A.
A formula A is valid in a class of frames C iff A is valid on each frame

F ∈ C.
Write |=C A when A is valid in the class of frames C and write |=R A

when A is valid in the class of R-frames.

It will be useful to have a notation for specifying the points at which
a formula holds.

Definition 2.4 (Propositions, Truth sets). In a frame F , a set X ⊆ K
is a proposition on F iff if a ∈ X and a ≤ b then b ∈ X .

In a model M , the truth set of A, |A|M , is {a ∈ K : a 
 A}.

Where no confusion will arise, the subscript on the truth sets will be
omitted.

There are two standard lemmas that I will state without proof.

Lemma 2.1 (Heredity Lemma). For all ternary relational models M and

all formulas A, if a 
 A and a ≤ b, then b 
 A.

It follows from this lemma that all truth sets are propositions. The
Heredity Lemma has an important consequence.

Lemma 2.2 (Verification Lemma). Let M be a ternary relational model.

For all formulas A and B, A → B holds in M iff for all a ∈ K, if a 
 A,

then a 
 B.

Appeal to the Verification Lemma will generally be left implicit.
The set of formulas valid in the class of R-frames is the logic R, an

axiomatization of which we now give. The logic is the set of formulas
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inductively defined taking the following axioms and closing under the
following rules.

(R1) A → A
(R2) (A ∧ B) → A, (A ∧ B) → B
(R3) ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(R4) A → (A ∨ B), B → (A ∨ B)
(R5) ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(R6) (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
(R7) (A → ∼B) → (B → ∼A)
(R8) ∼∼A → A
(R9) (A → (A → B)) → (A → B)

(R10) A → ((A → B) → B)
(R11) (A → B) → ((B → C) → (A → C))
(R12) t
(R13) A, A → B ⇒ B
(R14) A, B ⇒ A ∧ B
(R15) A ⇒ t → A

The notion of proof will be defined in the usual way, and ⊢R A will be
used to mean that A has a proof from the axioms and rules of R. Such a
formula is a theorem. As is well known, this axiom system is sound and
complete with respect to validity in the class of R-frames.

Theorem 2.3 (Soundness and Completeness). For all formulas A, A is

a theorem of R iff A is valid in the class of R-frames.

There are a few facts about the logic R and R-frames that will be
useful below. I will begin with the fact that R enjoys the variable sharing
property.6

Theorem 2.4 (Variable sharing). For all formulas A and B that do not

contain t, if ⊢R A → B, then A and B share a propositional atom.

Proof. See [Anderson and Belnap, 1975, pp. 252–254] or [Standefer,
2020] for details. ⊣

The variable sharing property is regarded as a necessary (but not
sufficient) condition on a logic being a relevant logic [see Mares, 2020].
The variable sharing property captures part of a fundamental motivating

6 See [Logan, 2021, 2022; Robles and Méndez, 2011, 2012] for more on the variable
sharing property.
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intuition for relevant logics, that there must be a substantive connection
between the antecedent and consequent of a valid conditional.

Next, I will list some features of R-frames that will be useful below.

Lemma 2.5. All R-frames obey the following frame conditions.

(i) ∀x ∈ K, Rxxx
(ii) ∀x ∈ K, Rxx∗x

(iii) ∀x ∈ N, x∗ ≤ x

Proof. Let 〈K, N, R, ∗〉 be an R-frame.
For (i), we have a ≤ a, for all a ∈ K, so for some b ∈ N , Rbaa, which,

incidentally, shows that N 6= ∅. By condition (F4), Rbaaa, so there is
some c such that Rbac and Rcaa. The former is a ≤ c, so by condition
(B5) on ternary relational frames, Raaa, as desired.

For (ii), we have Ra∗a∗a∗, by (i). Using (F1) and (B3) , we have
Ra∗aa. Then (F2) yields the desired Raa∗a.

For (iii), we use (ii) on points in N , as for a ∈ N , Raa∗a just is
a∗ ≤ a. ⊣

From (iii) in the preceding lemma, it is the case that |=R A ∨ ∼A.
That is enough of the basic background. I will now turn to the modal
extensions of R that will occupy the remainder of the paper.

3. Modal logics

The introduction noted that there were three different ways to present
classically based S5. While in the setting of classical logic, it makes sense
to consider a single connective, �, for all three concepts, for the present
relevant-logical setting, that will be confusing. Rather than add a single
connective, I will consider three extensions of the basic relevant language
L with singulary connectives, �,E, and U, denoted L�, LE, and LU,
respectively. I will use translations between the languages that change
only the singulary modals, e.g. if τ goes from LE to LU, τ(EA) = Uτ(A).
These translations will be suppressed, unless explicitly writing them will
aid clarity.

I will begin with the axiomatic logic RS5, which is an S5-ish extension
of R.7 Only � will be taken as primitive, with ♦ defined as ∼�∼. To

7 There is another logic that plausibly would count as an S5-ish extension of R.
This logic adds an additional axiom, which is discussed in §5.
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define RS5, we add to R the following axioms and rules, adjusting the
definition of proof and theorem accordingly.

(Agg) (�A ∧ �B) → �(A ∧ B)
(T) �A → A
(4) �A → ��A
(B) A → �♦A
(K) �(A → B) → (�A → �B)

(Nec) A ⇒ �A

Axiom (5), ♦A → �♦A, follows from the other axioms of RS5, as it does
in the classically based modal logic with the above axioms and rules,
taking the conditional in them to be the classical material conditional.
Rule (Mono), A → B ⇒ �A → �B, can be obtained from (K) and
(Nec). It is mentioned here because it will come up later and because
in the setting of relevant modal logics defined via frames with a binary
accessibility relation, (Mono) and (Agg) hold generally, while (K) and
(Nec) are optional extras that must be enforced via frame conditions.

To provide models for this modal logic, we add a binary accessibility
relation, S, to R-frames.

Definition 3.1. An RS5-frame is a quintuple 〈K, N, R, S, ∗〉, where 〈K,
N, R, ∗〉 an R-frame and S ⊆ K2, obeying the following conditions:

(M1) If Sbc and a ≤ b, then Sac.
(M2) If a ∈ N and Sab, then b ∈ N .
(M3) Saa.
(M4) If Sab and Sbc, then Sac.
(M5) If Sab, then Sb∗a∗.
(M6) If ∃z(Rabz ∧ Szc), then ∃x∃y(Sax ∧ Sby ∧ Rxyc).

The definitions of model, counterexample, holding, and validity are
all adapted in a straightforward way. The verification condition for � is
the following.

• a 
 �B iff for all b such that Sab, b 
 B

The Heredity Lemma and the Verification Lemma carry over to these
models. Fuhrmann [1990] showed that RS5 is sound and complete with
respect to the class of RS5-frames.8

8 To be slightly more precise, Fuhrmann did not show these results for the logic
with t, although his results still hold after its addition. See [Seki, 2003] for results
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Next, we turn to LE and the equivalence modality. The logic will be
defined via frames.

Definition 3.2. An equivalence relation ≈ on a set X is a binary rela-
tion on X that is reflexive, transitive, and symmetric.

An equivalence frame is a quintuple 〈K, N, R, ≈, ∗〉, where 〈K, N, R,
∗〉 is an R-frame and ≈ is an equivalence relation on K, obeying the
condition that if a ≤ b and b ≈ c, then a ≈ c.

For a given equivalence frame F , the equivalence class of the point
a, [a], is {b ∈ K : a ≈ b}.

The additional condition, closure of equivalence classes under ≤, is
in force to ensure the Heredity Lemma remains provable. The defini-
tions of model, counterexample, holding, and validity are adapted in the
straightforward way.

The verification condition for E in an equivalence model is the fol-
lowing.

• a 
 EB iff ∀b ≈ a, b 
 B

To ensure the Heredity criterion is satisfied, we need to require that the
≈-classes closed under ≤, which is to say that if a ∈ [c] and a ≤ b, then
b ∈ [c].

The final logic to be considered here is the logic of the universal
modality, U. For this logic, we will use the subclass of equivalence frames
where ≈ is the universal relation, i.e. ≈ = K × K. Such frames will be
called universal frames. Universal frames can also be viewed simply as R-
frames, since each R-frame can be uniquely extended to a universal frame
and each universal frame has a unique underlying R-frame, obtained by
omitting the universal relation. The verification condition for U is the
same as that for E, but since the equivalence relation is trivial, it will be
omitted, yieding the following verification condition:

• a 
 UB iff for all b ∈ K, b 
 B.

for an extended language.
Apart from the first condition, which is required for any modal expansion

of ternary relational frame with a binary accessibility relation, all the conditions
correspond to axioms and rules in the sense that the class of frames obeying that
condition validates the axiom and the canonical model for the logic with the axiom
obeys that condition. Condition (M2) goes with (Nec), (M3) with (T), (M4) with
(4), (M5) with (B), and (M6) with (K). The reader might have expected the condition
paired with (B) to be symmetry rather than (M5). This point will be discussed more
in the final section.
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The Heredity Lemma and Verification Lemma still hold when U is in the
language.

For ease of reference, I will now define the following classes of frames:

• S5 is the class of RS5-frames.
• E is the class of equivalence frames.
• U is the class of universal frames.

These classes gives us three prima facie distinct logics, the sets of for-
mulas valid in each of the three classes of frames just mentioned:

• RS5 is the set of L�-formulas valid in S5.
• Eq is the set of LE-formulas valid in E.
• U is the set of LU-formulas valid in U.

As just stated, these are all distinct logics since they are not even in
the same language. Using the translation mentioned at the start of this
section, I will talk as though these logics were formulated in the same
language, so the question of their sameness and difference can be settled
in a non-trivial way.

4. Universal modality

In this section, I will demonstrate the relation between the logic U and
the logics Eq and RS5. As mentioned above, the universal relation can
be viewed as an equivalence relation, so U has a simple embedding in E.
Therefore, Eq ⊆ U. Below I will show that this inclusion is proper.

It will be useful to have a bit of terminology for the discussion to
come. The terminology will be introduced for arbitrary models, to apply
across the different notions of model introduced.

Definition 4.1 (Ubiquity). Let M be a model based on an R-frame 〈K,
N, R, ∗〉.

A formula A is ubiquitously true in M iff |A|M = K.
A formula A is ubiquitously false in M iff |A|M = ∅.
A formula A is ubiquitous in M iff A is either ubiquitously true or

ubiquitously false.

The terminology of ubiquity is based on a remark by Fuhrmann in
an explanation of a phenomenon in relevant modal logics.9 In the un-

9 Fuhrmann [1990] attributes the terminology to a suggestion by Humberstone.
For further discussion of ubiquity and relevant logics, see [Standefer, 2022].
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derlying relevant logic R, and in fact in RS5, no formulas are ubiquitous
in all models, a fact to be proven shortly. Before that, I will introduce
some more terminology.

Definition 4.2 (Defining Falsum). Say that a language defines Falsum

with respect to a class of frames iff there is a formula A in the language
such that A is ubiquitously false in all models built on those frames. A
witnessing formula A is said to define Falsum.

If a language defines Falsum with respect to a class of frames and a
witnessing formula does not contain t, then the logic obtained from that
class will violate the variable sharing property, as demonstrated by the
following instance of the general idea.

Lemma 4.1. LU defines Falsum with respect to U and a witnessing for-

mula is Up ∧ ∼Up.

Proof. Let M be a model built on an R-frame and let a ∈ K be arbi-
trary. Suppose a 
 Up ∧ ∼Up. Then for all b ∈ K, b 
 p, so a∗ 
 Up.
Therefore, a 1 ∼Up, so a 1 Up ∧ ∼Up. So, a 1 Up ∧ ∼Up. ⊣

Corollary 4.2. (Up ∧ ∼Up) → q is a validity of U.

Proof. Suppose (Up ∧ ∼Up) → q is not valid, so there is counterex-
ample. This requires that there be a point a in a model such that
a 
 Up ∧ ∼Up, but |Up ∧ ∼Up| = ∅, as that formula defines Falsum.
Therefore, there is no counterexample. ⊣

In view of Corollary 4.2, the logic U does not have the variable shar-
ing property. It should be noted that the involvement of negation and
conjunction is not required to demonstrate the failure of variable sharing.
One could define the notion of defining Verum, rather than Falsum, as
a formula being ubiquitously true in all models on all frames in a class.
Then the formula Up → Up defines Verum and q → (Up → Up) is a
theorem of U, providing another witness to the failure of the variable
sharing property.

There is a general feature exhibited the formula defining Falsum
above. It will be worth making it explicit and pulling it out into a
lemma.

Lemma 4.3. Suppose that M is a model and A is a formula such that

for all a ∈ K, a ∈ |A|M iff a∗ ∈ |A|M . Then A ∧ ∼A is ubiquitously false

in M .
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Proof. Suppose M and A are as in the statement of the lemma. Sup-
pose that A ∧ ∼A is not ubiquitously false in M , so for some a ∈ K,
a 
 A ∧ ∼A. Then a 
 A. By assumption, a∗ 
 A. But then a 1 ∼A,
which contradicts the assumption. ⊣

If a formula’s truth set has the displayed feature, containing a point
if and only if it contains that point’s star, then it provides a recipe
for generating formulas that are ubiquitously false in a model. If the
property can be guaranteed for all models, then it is possible to define
Falsum.

The variable sharing property is one of the features separating RS5
from U.

Theorem 4.4. RS5 has the variable sharing property.

Proof. To show this, I will use the matrix M0 from [Anderson and
Belnap, 1975, pp. 252–254], which was used to prove that R has the
variable sharing property. On this matrix, interpret � as the identity
operator so that v(�B) = v(B). All the axioms of RS5 are designated
on all such assignments and all rules preserve being designated. For any
formula A in L�, define A− to be A with all occurrences of � removed.
It can be shown by induction on the complexity of A that v(A) = v(A−),
for all formulas A. Further, as can be shown by induction on the length
of a proof, if B is a theorem of RS5, then B− is a theorem of R.

Suppose that B → C is a theorem of RS5 that violates the variable
sharing property. Then (B → C)− is a formula in L. By the ‘further’
observation above, (B → C)− is a theorem of R that violates the variable
sharing property, which contradicts theorem 2.4. Therefore there is some
assignment v such that v((B → C)−) is not designated, so v(B → C) is
not designated. Therefore, B → C is not a theorem of RS5, contradicting
the assumption. ⊣

The details of this proof suffice to establish that L� cannot define
Falsum with respect to S5, which is more than is needed for the desired
corollary.

Corollary 4.5. The formula (�p∧∼�p) → q is not a thoerem of RS5.

Corollary 4.6. It is not the case that U ⊆ RS5, that is, U * RS5.

The second corollary is perhaps not surprising. Let us turn to the con-
verse inclusion.
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The rule (Nec) is not sound for U, which is to say that U is not closed
under that rule.

Lemma 4.7. The formula p → p is a theorem of U but U(p → p) is not.

Proof. To see that p → p is a theorem, note that it is valid on all R-
frames, which is to say valid on U. It is well known that there are models
on R-frames with (non-normal) points at which p → p fails, which must
be the case in order to provide a counterexample to q → (p → p), which
is not a theorem of R. Take such a model, and take any a ∈ N . Then,
a 1 U(p → p), so U(p → p) is not a theorem of U. ⊣

Corollary 4.8. The logic U is not closed under (Nec).

Corollary 4.9. It is not the case that RS5 ⊆ U, that is, RS5 * U.

That U and RS5 are incomparable as logics is, I think, somewhat
surprising. I will return to the significance of this result in the final
section.

The proof of lemma 4.7 can be used to show a similar failure of (Nec)
with respect to Eq. The problem, in both cases, arises from the fact
that (Nec) requires a special frame condition for its soundness, namely
condition (M2) in the definition of an RS5-frame. Both classes U and E

contain frames that violate that condition. Imposing that condition on
U means taking the proper sublcass of frames where K = N . Such a
move would be disastrous from the point of view of the relevant logician
for the following reason.

Lemma 4.10. Let UN be the subclass of U such that each frame in UN

obeys the condition K = N . Then ∼(p → p) → q, q → (p → p), and

p → (q → p) are valid in UN .

Proof. Since p → p is valid in U, p → p holds at each point a ∈ N
in a given model. Since all models built on frames in UN have only
normal points, p → p holds at every point in such a model. So, there is
no point b∗ such that b∗ 1 p → p, so ∼(p → p) is false throughout all
such models. Therefore, ∼(p → p) → q has no counterexamples. Similar
reasoning establishes that q → (p → p) is valid as well.

Finally, since q → (p → p) is valid, p → (q → p) is valid. The reason
is that every U frame is an R-frame, (R10) is valid, which together with
(R11) and (R13), suffices for the dreaded conclusion.10 ⊣

10 Thanks to an anonymous referee for asking whether this last part was provable.
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R 0 a b ∗ ≈
0 0 a b 0 0
a a ab 0ab b a
b b 0ab ab a b




0 p
a p
b ∅

Table 1. Countermodel on equivalence frame

Attempting to regain (Nec) for U by imposing the corresponding
frame condition results in disaster, since it means that the extension of
R with the new connective U is no longer a conservative extension of the
base logic. In fact, it upsets the variable sharing property enjoyed by
the base logic. Let us now turn to the relation between U and Eq.

As mentioned earlier, Eq is contained in U. This inclusion is proper.

Lemma 4.11. The formula (Ep ∧ ∼Ep) → q is not a theorem of Eq.

Proof. To see that (Ep ∧ ∼Ep) → q is not valid, we present a simple
countermodel, provided in table 1. For this countermodel, let K =
{0, a, b} and let N = {0}.11 In the R portion of the table, entries with
multiple points indicate multiple R facts. For example, the entry in the
a-row and a-column means that Raaa and Raab. The frame in table 1
is an equivalence frame.12 To show that (Ep ∧ ∼Ep) → q is not valid,
it suffices to find a point such that the antecedent holds there but the
consequent does not. For that, a will work. First, note that a 
 Ep,
since [a] = {a}. Next, a 
 ∼Ep iff a∗ = b 1 Ep. It is the case that b 1 p,
so, as [b] = {b}, b 1 Ep. Thus, a 
 Ep ∧ ∼Ep. As q holds nowhere, it
follows that this is a countermodel to (Ep ∧ ∼Ep) → q. ⊣

Corollary 4.12. Eq ( U

The logic of the universal modality, over R, does not coincide with
that of either of the other two formulations of S5, over R. We can say
a bit more about the logic, although the question of Completeness, or
indeed even axiomatizability, will be left open.

Theorem 4.13. (1) Axioms (Agg), (T), (4), (B), (K) are theorems of U.

11 Thanks to Greg Restall for suggesting the underlying R-frame.
12 Note that the table for 
 only displays the relevant atoms verified at a point.

The row with b and ∅ says that b 1 p; it does not say that b verifies no formulas.
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(2) Axiom (U), U(UA → A), is a theorem of U.13

(3) U is closed under (Mono).

Proof. For (1), it is obvious that (Agg), (T), and (4) are theorems.
For (B), suppose a 
 A, for an arbitrary point a in an arbitrary model

based on a frame in U. Suppose a 1 U∼U∼A. Then there is a point b
such that b 1 ∼U∼A. So, b∗ 
 U∼A. So for all points c, c 
 ∼A, so
c∗ 1 A. Let c = a∗, so, as a∗∗ = a, a 1 A, which is a contradiction.
Therefore, (B) does not have a counterexample in U.

For (K), suppose a 
 U(A → B), for an arbitrary point a in an
arbitrary model based on a frame in U. Suppose a 1 UA → UB, so
there are b, c ∈ K such that Rabc, b 
 �A, but c 1 �B. From the
latter, there is a point d such that d 1 B. From b 
 �A, it follows
that d 
 A. As Redd, for some e ∈ N by (B2), and e 
 A → B. But
then d 
 B, which is a contradiction. Therefore, (K) does not have a
counterexample in U.

For (2), let a be an arbitrary point in an arbitrary model based on a
frame in U. Suppose b, c ∈ K are such that Rabc and b 
 UA. From the
verifiation condition for U, it follows that c 
 A, so a 
 UA → A. As a
is arbitrary, a 
 U(UA → A) as well.

For (3), assume that A → B is a theorem and suppose, for some
model, a 
 �A. Then for every b ∈ K, b 
 A, whence b 
 B from
the initial assumption. Thus, a 
 �B, which suffices for the validity of
�A → �B with respect to U. ⊣

There is more to explore concerning U, but let us instead turn to Eq.

5. Equivalence relations

The logic Eq differs from both U and RS5. The relationship to U was
established in the preceding section, so we will focus on the connection
to RS5.

As noted in the preceding section, Eq is not closed under the rule
(Nec). We can consider what happens if we enforce the condition that
a ∈ N and a ≈ b only if b ∈ N . Let E(M2) be the subclass of E such
that every frame in E(M2) obeys the condition a ∈ N and a ≈ b only if

13 The axiom (U) should not be mistaken as characteristic of the logic U, which
mistake may be suggested by its name. The name of the axiom is fairly standard in
work on modal logic [see, e.g. Humberstone, 2016, p. 33]
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b ∈ N . As before, there are some consequences that violate relevantist
principles.

Lemma 5.1. Let F be an equivalence frame in E and suppose a ∈ N .

Then [a∗] = [a].

Proof. Let F be an equivalence frame in E and suppose a ∈ N . By
lemma 2.5, a∗ ≤ a. Therefore, a∗ ≈ a, so a∗ ∈ [a]. So for every b ∈ [a],
a∗ ≈ b. By the fact that ≈ is an equivalence relation, [a∗] = [a] ⊣

Corollary 5.2. LE defines Falsum over E(M2) with (p → p) ∧ ∼(p →
p) ∧ t as a witness.

Proof. Suppose a ∈ |(p → p) ∧ ∼(p → p) ∧ t|M , for some model M
on an equivalence frame in E(M2). Then, a ∈ N , since a 
 t. But then,
a 
 p → p, as p → p is a theorem of R. From the lemma and condition
(M2), it follows that a∗ 
 p → p, so a 1 ∼(p → p), contradicting the
assumption. ⊣

Corollary 5.3. ((p → p) ∧ ∼(p → p) ∧ t) → q has no counterexamples

in E(M2).

Thus, over the restricted class of frames, the addition of E is not con-
servative over the base logic, as the displayed formula is not a theorem
of R.

While the frame conditions for R-frames have not featured much in
the paper so far, they are essential to arguments of this section. The
trouble stems from the condition that, for normal points a, a∗ ≤ a. This
condition holds in frames for some weaker relevant logics, indeed any
logic validating excluded middle, A ∨ ∼A.14 Let us turn to the more
general class of frames, E, to see what further trouble this condition
causes.

Lemma 5.1 tells us that, over E, ≈ is not, in general, the identity
relation, i.e. a ≈ b iff a = b. In frames where ≈ is the identity relation,
then for all normal points a, a = a∗, which limits their ability to provide
counterexamples to contradictory claims. Indeed, the formula displayed
in the preceding corollary is valid in the class of frames where ≈ is the
identity relation on the normal points.

14 See [Routley et al., 1982], especially chapter 4, for discussion of some of the
virtues and charms of weaker relevant logics and the details of their frames. Excluded
middle is the source of a surprising amount of difficulty for relevant logics, See [Slaney,
1987] for some discussion, as well as [Standefer, 2021, 202x].
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→ 0 1
2 1 ∼ �

0 1 1 1 1 0
1
2 0 1

2 1 1
2

1
2

1 0 0 1 0 1

Table 2. Matrix for algebraic countermodel

Falsum is definable in the language with E and t, with the latter’s
significant role suggested by the earlier discussion.

Lemma 5.4. LE defines Falsum over E and t ∧Ep ∧ ∼Ep is a witnessing

formula.

Proof. Let M be an equivalence model. Suppose for some point a,
a 
 t ∧Ep ∧ ∼Ep. The first conjunct implies a ∈ N , which by lemma 5.1
means that [a∗] = [a]. Reasoning much as in the proof of lemma 4.3,
a∗ 
 Ep, so a 1 ∼Ep. Therefore, t∧Ep∧∼Ep is verified at no point in M ,
which was arbitrary. Therefore, t ∧Ep ∧ ∼Ep defines Falsum over E. ⊣

Corollary 5.5. (t ∧ Ep ∧ ∼Ep) → q is a theorem of Eq.

That leads us to another difference with RS5. The formula displayed
in the corollary is not a theorem of RS5.

Lemma 5.6. (t ∧ �p ∧ ∼�p) → q is not a theorem of RS5.

Proof. A matrix argument similar to the one in the proof of theorem
4.4 shows that this formula is not a theorem of RS5. The following
algebra supplies a countermodel. Let V = {0, 1

2 , 1} with 0 < 1
2 < 1

and 0 the only undesignated element. Valuations assign elements of V
to atoms, with v(t) = 1

2 . Conjunction and disjunction are interpreted
as minimum and maximum on the ordering, with the other connectives
interpreted via table 2. Every axiom of RS5 is designated on every
valuation, and all rules of RS5 preserve the property of being designated
on all valuations.15 For the counterexample, choose a v such that v(p) =
1
2 and v(q) = 0, so v(t∧�p∧∼�p) = 1

2 . Then v((t∧�p∧∼�p) → q) = 0,
so it is not a theorem of RS5. ⊣

The fact that RS5 has the variable sharing property does not suffice,
on its own, to show that (t∧Ep∧∼Ep) → q is not a theorem of RS5. The

15 This algebra is a simple extension of RM3, for which R was shown sound by
Meyer. See [Anderson and Belnap, 1975, p. 470] for more on this algebra.
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R 0 a b ∗ ≈
0 0 a b 0 0, b
a a ab 0ab b a
b b 0ab ab a 0, b




0 ∅
a p, q
b q

Table 3. Countermodel to (K) on equivalence frame

R 0 a b ∗ ≈
0 0 a b 0 0, b
a a ab 0ab b a
b b 0ab ab a 0, b




0 p
a p
b ∅

Table 4. Countermodel to (B) on equivalence frame

Ackermann constant excludes that formula from the force of the variable
sharing property.16 The formula violates the spirit, if not the letter, of
the variable sharing property, which idea is partially vindicated by the
countermodel. The lemma establishes the final relation left open among
our logics. Thus, we obtain Eq * RS5.

There are some further divergences between Eq and RS5 that are
worth bringing out. The former lacks some validities provable in the
latter, including some used as axioms in the basis for RS5 of §3, as the
following observation shows.

Lemma 5.7. Axiom (K), E(A → B) → (EA → EB), is not valid in E.

Proof. The instance E(p → q) → (Ep → Eq) is not valid. The counter-
model, presented in table 3, is obtained from a few small tweaks to the
countermodel from table 1. Suppose that a 
 E(p → q). We have Raab,
and a 
 Ep, as [a] = {a}. As 0 ≈ b and 0 1 q, b 1 Eq, which suffices to
show that a 1 Ep → Eq. ⊣

Lemma 5.8. Axiom (B), A → E∼E∼A, is not valid in E.

Proof. The instance p → E∼E∼p is not valid. The countermodel is
obtained by altering the valuation from the previous countermodel, and
it is displayed in table 4. Since a∗ = b and b 1 p, a 
 ∼p. It follows
that a 
 E∼p, so b 1 ∼E∼p. Since b ≈ 0, 0 1 E∼E∼p. By assumption,
0 
 p, so this is a countermodel to the p → E∼E∼p. ⊣

16 For further discussion of the variable sharing property in the presence of propo-
sitional constants, see [Yang, 2013].
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R 0 a b ∗ ≈
0 0 a b 0 0, b
a a ab 0ab b a
b b 0ab ab a 0, b




0 q
a ∅
b p

Table 5. Countermodel to (MC) on equivalence frame

There is another axiom to consider, modal confinement.17

(MC) �(A ∨ B) → (�A ∨ ♦B)

(MC) is a theorem of classically based S5, taking the conditional to be
the material one, but it is not a theorem of RS5.18 The addition of
(MC) enables a straightforward embedding of classically based modal log-
ics into relevant modal logics [see Mares and Meyer, 1993; Meyer and
Mares, 1993]. As one would expect, there is an additional frame con-
dition that needs to be imposed on RS5-frames to validate the axiom,
which condition is

(M7) Sab ⇒ ∃x(Sax ∧ Sa∗x∗ ∧ x ≤ b) [see Mares, 1992, 1994; Mares
and Meyer, 1993; Meyer and Mares, 1993].

(MC) is not a theorem of Eq but it is a theorem of U.

Lemma 5.9. Axiom (MC), E(A ∨ B) → (EA ∨ ∼E∼B), is not valid in E.

Proof. The instance E(p ∨ q) → (Ep ∨ ∼E∼q) has a countermodel. It
is obtained from adjusting the valuation from table 4 and it is displayed
in table 5. In this model, b 
 E(p ∨ q), as [b] = {0, b} and exactly one
disjunct is true at each point in [b]. We have b 1 Ep, as 0 1 p and b ≈ 0.
As b 1 q and a∗ = b, a 
 ∼q. Since [a] = {a}, a 
 E∼q, so b 1 ∼E∼q.
This suffices to show that b is a counterexample point for the instance
of (MC). ⊣

While (MC) is not a theorem of Eq, it is valid when we strengthen the
force of the necessity operator to be universal.

Lemma 5.10. Axiom (MC), U(A ∨ B) → (UA ∨ ∼U∼B), is valid in U.

17 This axiom, and a related principle, are discussed by Dunn [1995] and by
Bimbó and Dunn [2008, §10.3]. Restall [2000, 265ff.] calls them the “Dunn con-
ditions”. I would like to thank an anonymous referee for suggesting the first two
references.

18 Slaney’s program MaGIC generates a six element counterexample.
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Proof. In universal frames, ≈ is the universal relation, so letting x be
b, the condition holds. This is sufficient to validate (MC). ⊣

That is enough about what is not a theorem of Eq. I will summa-
rize which modal axioms of RS5 are theorems of Eq. The proof of the
following lemma is straightforward and so will be omitted.

Lemma 5.11. Axioms (Agg), (T), and (4) are validities of Eq and the

logic is closed under rule (Mono).

As with U, the question of Completeness will be left open.19 Before
turning to the concluding discussion, I will discuss the role of frame
conditions in Eq. The definition of Falsum over E offered in this section
depended on the frame conditions for R-frames for its validity. Since
Falsum is definable, RS5 and Eq are incomparable. It seems plausible
that if the base logic is weakened to a logic L whose frames do not have
to obey the problematic frame condition a∗ ≤ a, for a ∈ N , the L-
analog of Eq will be contained in the L-analog of S5. That question,
however, will be left open here. As the countermodels offered to (B), (K),
(MC), and (Nec) were based on R-frames, they will remain available as
countermodels in the transition to a weaker base logic.

6. Conclusion

While the three conceptions of S5 coincide over classical logic, from the
vantage point of relevant logics, we can see that they conflate distinct
ideas. This is similar to the phenomenon in which distinctions in a
concept can be drawn when one moves to a weaker logic, or, to put it
in terms more amenable to proponents of the weaker logics, one stops

19 I will note a particular difficulty, raised in a different context by Mares [1994],
with proving Completeness via the usual canonical model construction. The closure
conditions on equivalence classes ensures that one can show that the models obey the
condition

b 
 �A ∧ a ≤ b ⇒ a 
 �A.

A consequence of this condition is that in the canonical frame, the heredity relation
cannot be the subset relation, which is perhaps the standard way to define it. This
is not to say that no alternative definition will work, only that the standard methods
will not do. An alternative, such as that adopted by Mares [1992], might work, or
alternative frame conditions may be need, such as in [Mares, 1994].
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conflating distinct concepts.20 This happens, for example, with additive
and multiplicative conjunction in the move from classical logic to R. In
the present case, it is the different senses of necessity that are being
distinguished, and with them, the different possibilities for the meaning
of the phrase “S5 extension of R”.21

In a sense, that the different formulations of S5 come apart over a
relevant base logic such as R should not be too surprising, since even
in classically based modal logic, the universal modality and equivalence
relation conception of necessity come apart in the presence of an actuality
operator [see Crossley and Humberstone, 1977, p. 20]. In the present
setting, the difference appears without the addition of actuality to the
language.22 Perhaps more interesting is the failure of the axiomatic form
of the logic to coincide with either of the other formulations. In the
relevant setting, the De Morgan negation, used to formulate possibility,
♦, as ∼�∼, in (B), is weaker than the boolean negation of classical
logic.23 This shows up in the frame condition (M5) corresponding to
(B), which fails to be symmetry for S, securing only Sab ⇒ Sb∗a∗. In
some cases the condition will yield symmetry, namely when a∗ = a and
b∗ = b, but not in general. This means that the frame conditions fall
short of forcing S to be an equivalence relation on K.

In RS5-frames, the binary relation S is not forced to be an equiva-
lence relation. In equivalence frames, on the other hand, the equivalence
relations are not forced to coordinate in the appropriate ways with the
ternary relation and star operator. These two features of the frames can
shift a point of evaluation between equivalence classes, in much the same
way that in classically based modal logics, the actuality operator can
move one between equivalence classes. This shifting issue is somewhat
ameliorated in the universal frames at the cost of introducing violations
of variable sharing.

20 For more discussion of this phenomenon, see [Humberstone, 2005]. I thank
Lloyd Humberstone for discussion of these issues.

21 The number of options increases if (MC) is included in the mix.
22 The relevant logician can add an actuality operator to the language, although

that idea will not be pursued here. For details on actuality in relevant logics, see
[Standefer, 2020].

23 Bimbó and Dunn [2008, §1.3], especially p. 35ff., discusses the role of boolean
negation in linking necessity and possibility. I would like to thank an anonymous
referee for this reference.
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The closure condition on equivalence classes in equivalence frames
forces an additional amount of symmetry, but that symmetry does not
suffice for the validity of (B). Adding the frame condition (M5) to equiv-
alence frames would suffice for the validity of (B), and it would further
validate (MC). That frame condition has the further consequence that ♦

would have a verification condition in line with that of ♦ in classically
based modal logics:24

• a 
 ♦A iff ∃x ∈ K(Sax ∧ x 
 A).25

Imposing condition (M5) on equivalence frames would, then, make E,
and its defined dual, closer in many ways to the operators of classically
based S5. It is not clear that adding condition (M6), the frame condition
for (K), has such large effects on the resulting logic. Adding frame condi-
tions to the equivalence frames, however, does undermine the otherwise
neat characterization of the logic in terms of equivalence relations. As
(Nec) would remain unavailable to anyone who wants to maintain the
spirit of relevant logics, there is a question of what the rationale would be
for strengthening Eq in that way. The rationale for such a strengthening
will be left for future work.

To conclude, I will return to the fact that U and RS5 are incompara-
ble as logics. The incomparability shows that necessity, for the relevant
logician, is a delicate matter. It reveals that the relevant logician should
reject the universal conception of necessity, as that contains the seeds
of (disastrous) irrelevance. Something can be true, even necessarily so,
even true by the lights of logic, without it being implied by everything
else. Such a fine-grained notion of implication is at the heart of the rel-
evant logic enterprise. Further, for the paraconsistent logician attracted
to relevant logics, contradictions should not imply everything, and con-
tradictions among modal claims should be no different. The universal
conception of necessity is, in at least these respects, too permissive. Re-
jecting the universal conception of necessity raises a serious question for
the relevant logician: What other options are there? Answering this
question requires getting clear on what about the universal conception

24 Such logics are “sufficiently classical”, in the terminology of [Ferenz, 2022].
25 Note that if a ≈ b, then by (M5), b∗ ≈ a∗. By the symmetry of ≈, a∗ ≈ b∗.

As shown by Mares [1994], the condition that Sab ⇒ Sa∗b∗, which holds replacing
the prefixed S with an infix ≈, suffices for the displayed verification condition to hold.
This argument also shows that in universal models, ♦ obeys the classical verification
condition.
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of necessity is attractive. Are we primarily interested in a model theory

with a particular sort of simple verification condition or are we primarily
interested in the resulting logic?

If the primary interest is in a certain sort of model theory, then
options seem to be limited.26 There is little wiggle room if the verification
condition for U must be maintained.27 If some flexibility is permissible,
there are some salient alternatives. One such alternative is restricting
the universal quantification to the normal points, for which we will use
a different symbol:

• a 
 NA iff ∀b ∈ N, b 
 A.

This connective suffers from some of the same defects as U. A formula
of the form NA, if true anywhere in a model, will be ubiquitously true.
This means that q → (Np → Np) will be ubiquitously true in all models.
Additionally, due to the quantification over the normal points, U will
have some features of t, such as the validity of Np → (q → q). Apart
from violations of the variable sharing property, there are some further
problems. The connective will not deliver some of the target principles,
notably (T).

Other alternatives split the verification condition, in the manner of
classically based, non-normal modal logics or the simplified semantics
for relevant logics.28 That sort of verification condition is split between
normal and non-normal points, such as the following:

• a 
 SA iff (i) if a ∈ N , then ∀b ∈ N, b 
 A, and (ii) if a /∈ N , then
∀b ∈ K, Sab ⇒ b 
 A.

There are other options for both clauses, such as quantification over
all points for the first clause and simply false for the second, but it is
not clear that any other combination is a great improvement. Some
of the same issues as we have seen can be reproduced even with the

26 The development of a suitably non-classical model theory, of the sort suggested
by Girard and Weber [2015] and Weber et al. [2016], might help.

27 One route, which will not be explored further here, is defining a special set
of points in the frame as worlds, as is done by [Meyer and Mares, 1993] or [Sedlár,
2015]. It is natural to define such points in a way that makes negation more classical
there, which, we expect, will reproduce some of the problems highlighted with the
other modalities considered in this paper.

28 For non-normal modal logics, see Priest [2008, ch. 4]. For simplified semantics,
see [Priest and Sylvan, 1992; Restall, 1993; Restall and Roy, 2009], as well as [Priest,
2008, ch. 10].
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split conditions, by conjoining t with a formula of the form SA. For this
reason, further investigation of this option will be left for future research.

Suppose that the interest is not primarily in the models, but rather,
in the logic. Then the axiomatic conception, something in the vicinity
of RS5, is the natural option. The logic RS5 gives the desired modal
principles, while maintaining many of the features of the underlying
relevant logic that relevant logicians find appealing.29

The universal and axiomatic conceptions of necessity coincide against
the backdrop of classical logic. We can see from the vantage point of
relevant logic, that far from coinciding, one conception is, perhaps sur-
prisingly, deeply in tension with the motivations for relevant logics. The
other conception, by contrast, aligns well with those motivations.
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