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Abstract

In this paper, we provide an axiom system for the relevant logic of equiv-
alence relation frames and prove completeness for it. This provides a partial
answer to the longstanding open problem of axiomatizing frames for relevant
modal logics where the modal accessibility relation is symmetric. Following
this, we show that the logic enjoys Halldén completeness and that a related
logic enjoys the disjunction property.

1 Introduction

Recently the project of combining ideas and techniques from relevant logics with
those from epistemic logic has attracted a lot of attention.1 Many of the developments
in this project diverge from the common modelling technique of using equivalence
relations to interpret the knowledge operator, as in many classically-based epistemic
logics.2,3 In contrast to these, Standefer (2025a) studied the logic of frames that use
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University of Wellington
1 For more on relevant logics, the reader should see the introductions and overviews by Dunn

and Restall (2002), Read (1988), Mares (2020), Bimbó (2007), Logan (2024), and Standefer (2024;
202x). Rendsvig et al. (2023) provide a reader-friendly overview of epistemic logics.

2See Meyer and van der Hoek (1995), Stalnaker (2006), or van Ditmarsch et al. (2007), for
examples of the use equivalence relations on modal frames, what we will call ‘partition frames’
below.

3There have been many developments in relevant epistemic logics, broadly understood, including
those by B́ılková et al. (2010), Sedlár (2015; 2016), B́ılková et al. (2016), Sav́ıc and Studer (2019),
Standefer (2019; 2023a; 2023c), Tedder and B́ılková (2022), Punčochář et al. (2023), Ferenz (2024a),
Sedlár and Vigiani (2023; 2024), and Vigiani (2024).
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a modal accessibility relation S that is an equivalence relation. Perhaps the most
salient philosophical virtue of these frames is that the use of the equivalence relations
allows one to employ the same epistemic indistinguishability interpretation on points
used in partition frames, namely Kripke frames whose modal accessibility relation
S is an equivalence relation, for classically-based epistemic logics.4 According to
this interpretation, the members of an equivalence class are those worlds that are
epistemically indistinguishable to the agent given their background information. The
logic of partition frames is S5, and there are many criticisms directed as S5 as an
epistemic logic. Standefer argued that Eq, the logic of equivalence frames for a
relevant logic, avoids many of those criticisms.5 The logic Eq contains neither the
so-called negative introspection axiom, (5) ¬�A→ �¬�A, nor the (B) axiom, A→
�¬�¬A, which axioms are some of the main targets of criticisms in the context of
epistemic logics.6 In addition, Eq avoids the (K) axiom, �(A→ B)→ (�A→ �B),
and the (Nec) rule, from A being a logical truth to infer �A is, both of which are
forms of logical omniscience.7 Thus, the logic of equivalence frames is promising as
an epistemic logic, both because (i) it avoids some of the philosophical criticisms
directed at the use of classical partition frames while maintaining some of their
virtues and (ii) it provides an appealingly simple contrast to other relevant epistemic
logics and their frames.

No axiomatization of Eq was given by Standefer (2025a). Axiomatizing the logic
of equivalence frames presents some challenges. Since the modal accessibility relation
S is an equivalence relation, it is symmetric, i.e. if Sab then Sba, which might suggest
the use of (B) in its axiomatization. Whereas the (B) axiom is valid on classical
Kripke frames where S is symmetric, the (B) axiom is invalid on equivalence frames
for relevant logics. There are relevant modal logics that contain the (B) axiom and
are complete with respect to an appropriate class of frames, as shown by Fuhrmann
(1990). Those frames, however, do not obey the symmetry condition for S, in general,
unlike the case with classically-based modal logics containing (B). The condition

4When discussing classical Kripke frames, it is more common to use ‘R’ rather than ‘S’ for the
modal accessibility relation. In this paper, ‘R’ is used for the ternary relation in the frames for
relevant logics, so we are using ‘S’ for the different modal accessibility relations.

5Standefer (2025a) focused on the logic of equivalence relations over frames for the relevant
logic R, below we focus on the logic of equivalence relations over frames for the weaker logic B.
Nothing hinges on the choice of base logic at least with respect to completeness and the epistemic
interpretation discussed above. Some of the further results we prove do depend on choice of base
logic.

6Hintikka (1962) and Williamson (2000) are both prominent sources for those criticisms. The
criticisms focused on the positive introspection axiom, (4), are not avoided.

7The logic is closed under the rule (Mono), from A→ B being a logical truth to infer �A→ �B
is, so the logic does not avoid all forms of omniscience.
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associated with (B) is

• if Sab, then Sb∗a∗,

where ∗ is the Routley star, used to interpret negation. Since, in general, x∗ need
not be identical to x, this condition will not deliver symmetry for S.8 Mares (1994)
shows that on frames with the additional condition, that if Sab, then Sa∗b∗, the
addition of the (B) axiom to a logic secures completeness with respect to frames
where S is symmetric, as it does in classically-based modal logics. Mares’s result,
however, does not settle the issue with respect to equivalence frames. First, this is
a substantive condition that is not adopted by many logicians working in the area;
and, second, in the context of the equivalence frames of Standefer (2025a), imposing
that condition yields a proper subclass of frames, what Standefer calls “coordinated
equivalence frames,” and it results in both (B) and (5) being valid, which undermines
the distinctiveness of the equivalence frames in the setting of frames for relevant
logics.9 Given the philosophical differences between the logic of equivalence frames
and the logic of coordinated equivalence frames, having an axiomatization of the
former is important.

Further, having an axiomatization for frames where with a symmetric modal
accessibility relation S is desirable for at least one additional reason: Symmetry is
a natural condition that plays an important role in many common structures, such
as the equivalence relations used in partition frames for classically-based epistemic
logics. In this paper, we will provide a sound and complete axiomatization of the logic
of equivalence frames, filling the gap left by Standefer (2025a). Our axiomatization
contains the axiom, �(A∨�B)→ (�A∨�B), which is valid in S5, but it does not use
(B).10 We prove completeness with respect to equivalence frames using a canonical
model construction for a logic containing this axiom. Our proof uses additional
axioms to secure the symmetry condition on the modal accessibility relation of the
canonical frame, so there are questions remaining about axiomatizing frames where
S is symmetric. In addition to the completeness result, we use other techniques to
show that this logic and a close relative have other good features, so this paper is,
in part, a technical companion to the philosophical discussion of Standefer (2025a).

8Cf. the discussion of this point by Standefer (2023b).
9Coordinated equivalence frames appear briefly below, in definition 40.

10It does not use (5) either, which in the present setting is interderivable with (B), given (T). We
will return to (B) and (5) below.

It is worth observing that with classical logic as the base logic, (5) is interderivable with the
axiom we call (M5) below, �(A∨�B)→ (�A∨�B), given (K) and (Nec). This is exercise 4.37(a)
from Chellas (1980). We would like to thank Rohan French for this pointer.
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The plan for this paper is as follows. In §2, we will present the required back-
ground on the frames and axiom systems for non-modal relevant logics. In §3, we
present the relevant modal logic BEq that will be our focus along with equivalence
frames. Then, we prove completeness for that logic with respect to the equivalence
frames of the previous section (§4). We then, in §5, use metavaluations to prove some
metatheoretic results about a slight extension of BEq, in particular that the exten-
sion has the disjunction property. After that, in §6, we show that BEq is Halldén
complete. Following this, we explore the features of the defined possibility opera-
tor in the models (§7). Finally, in §8, we close with a short summary and an open
question.

2 Background

We will work in a propositional language L with a countably infinite set of atoms,
At = {p, q, r, . . .}. The logical connectives are the vocabulary {¬,→,∧,∨,�}, and in
later sections of the paper we will briefly consider other singulary modal operators,
B and K. The � operator will not come into the picture until the next section.

We will use ternary relational frames, augmented by modal accessibility relations.
We begin with the basic frames for the relevant logic B.

Definition 1 (Frame). A B-frame is a tuple 〈K,N,R, ∗〉 obeying the following con-
ditions, where for a, b ∈ K, a ≤ b is defined as ∃x ∈ N : Rxab.

(i) If a ≤ b, then b∗ ≤ a∗.

(ii) a∗∗ = a.

(iii) If a ∈ N and a ≤ b, then b ∈ N .

(iv) If d ≤ a, e ≤ b, and c ≤ f and Rabc, then Rdef .

It is worth noting that condition (iv) is slightly stronger than what is needed
below, although this condition does enable easy extension with connectives such as
fusion.11 As usual, one can obtain frames for stronger logics by imposing additional
conditions on the frames. We will not go further into those details here. Instead, we
will proceed to define models and validity.

Definition 2 (Model). A B-model M is a B-frame 〈K,N,R, ∗〉 together with a val-
uation function V : At 7→ ℘K such that if a ∈ V (p) and a ≤ b, then b ∈ V (p).

Such a model is said to be built on the frame 〈K,N,R, ∗〉.
11We thank an anonymous referee for pointing this out.
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We inductively define truth at a world for the whole language.

• a 
 p iff a ∈ V (p)

• a 
 ¬B iff a∗ 6
 B

• a 
 B ∧ C iff a 
 B and a 
 C

• a 
 B ∨ C iff a 
 B or a 
 C

• a 
 B → C iff for all b, c ∈ K, if Rabc and b 
 B, then c 
 C

Given this definition, we can define notation for propositions.

Definition 3 (Proposition). In a given model M , [[A]] = {a ∈ K : a 
 A}.

This is useful notation that will facilitate some of our later discussion.

Definition 4 (Holding, validity). A formula A holds in a model M iff for all b ∈ N ,
b 
 A.

A formula A is valid on a frame F iff for all models M built on F , A holds in
M .

A formula A is valid in a class C of frames iff for all frames F ∈ C, A is valid on
F .

We write |=C A when A is valid in C.
We write |=B A when A is valid in the class of all B-frames.

Next, we note, without proof, two standard lemmas that we will appeal to in our
proofs. The appeals will be left implicit, as they are standard.

Lemma 5 (Heredity lemma). For all formulas A, if a 
 A and a ≤ b, then b 
 A.

Lemma 6 (Verification lemma). The following are equivalent in a given model M ,
for all formulas B and C.

• For all b ∈ K, if b 
 B, then b 
 C.

• For all a ∈ N , a 
 B → C.

The axiom system for B is the following.12 The final five principles are rules, with
the formulas to the left of ‘⇒’ being the premises of the rule and the formula to the
right the conclusion.

12Throughout we will view logics in the framework FMLA, that is as sets of formulas. See
Humberstone (2011, 103ff.) for more on logical frameworks.
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(Ax1) A→ A

(Ax2) (A ∧B)→ A, (A ∧B)→ B

(Ax3) A→ (A ∨B), A→ (B ∨ A)

(Ax4) ((A→ B) ∧ (A→ C))→ (A→ (B ∧ C))

(Ax5) ((A→ C) ∧ (B → C))→ ((A ∨B)→ C)

(Ax6) (A ∧ (B ∨ C))→ ((A ∧B) ∨ (A ∧ C))

(Ax7) ¬¬A→ A

(Ru1) A,A→ B ⇒ B

(Ru2) A,B ⇒ A ∧B

(Ru3) A→ ¬B ⇒ B → ¬A

(Ru4) A→ B ⇒ (C → A)→ (C → B)

(Ru5) A→ B ⇒ (B → C)→ (A→ C)

B is the smallest set of formulas containing all the axioms and closed under the rules.

Definition 7 (Proof). A B-proof is a sequence of formulas each of which is either
an axiom or is the conclusion of a rule whose premises occur earlier in the sequence.

The final member of a B-proof is the conclusion of the proof.
We write `B A when A is the conclusion of a B-proof.

The axiom system for B is sound and complete with respect to the frames for B.

Theorem 8. `B A iff |=B A.

Proof. For a proof, see Routley et al. (1982, ch. 4).

Since we are only discussing logics in this paper that are sound and complete with
respect to an indicated class of frames, we will use the term ‘theorem’ indifferently
between members of a set defined in terms of proofs and a set defined in terms of
frames.

Before proceeding to the modal logics, we will note that we are focusing on
the logic B, which is a natural, weak relevant logic. It is the logic of the ternary
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relational frames with the fewest conditions.13 As mentioned above, one can obtain
stronger logics by imposing conditions on the class of frames and by adding axioms
(or rules) to the axiomatization. The completeness result of our paper will go through
even with strengthening the base logic. Some of the other results, in particular the
metacompleteness result, depend on specific features of the base logic, so we will
focus on B. Below we will mention the logic R, which is perhaps the best known
relevant logic. It was central to the work of Anderson and Belnap (1975) and was
defended at length by Mares (2004). Perhaps most salient to our purposes is that it
was the focus of the discussion of Standefer (2025a). To obtain R from B, one can
add the following axioms.14

(R1) (A→ ¬B)→ (B → ¬A)

(R2) A→ ((A→ B)→ B)

(R3) (A→ B)→ ((C → A)→ (C → B))

(R4) (A→ (A→ B))→ (A→ B)

Corresponding to each of these axioms, there are frame conditions.

(F1) If Rabc, then Rac∗b∗

(F2) If Rabc, then Rbac

(F3) If ∃x ∈ K(Rabx and Rxcd), then ∃x ∈ K(Rbxd and Racx)

(F4) If Rabc, then ∃x ∈ K(Rabx and Rxbc)

Soundness and completeness extends to these axioms with respect to frames satisfy-
ing these conditions. We will not need to rely on any features of R below, but these
details are included to make the discussion more self-contained.

13There are weaker logics one can get on these frames, such as BM, whose frames drop the
involution postulate on the star. BM was studied by Fuhrmann (1990), as well as more recently by
Ferguson and Logan (2024). Weaker logics, such as BB, require alternative frames, such as those
discussed by Goble (2003) or Ferenz and Tedder (2023).

14Brady (1984) provides more details on axiomatizations for relevant logics, including R, as well
as Fitch-style natural deduction systems.
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3 Modal logics

To obtain an equivalence frame for B, we equip the B-frames with an equivalence
relation S on K.

Definition 9 (Equivalence frame). An equivalence frame for B is a tuple 〈K,N,R, S, ∗〉
such that 〈K,N,R, ∗〉 makes up a B-frame and the following conditions are satisfied.

(i) If a ≤ b and Sbc, then there is x ∈ K such that both x ≤ c and Sax.

(ii) S is an equivalence relation on K.

The definitions of model, counterexample are extended to equivalence frames in the
straightforward way. For a given frame, we will define the notation [a] = {b ∈ K :
Sab}.

Now we can give the distinctive principles for the modal operator, �. Following
each principle, we list a common name for it, if any.

(M1) A→ B ⇒ �A→ �B (Mono)

(M2) (�A ∧�B)→ �(A ∧B) (∧�)15

(M3) �A→ A (T)

(M4) �A→ ��A (4)

(M5) �(A ∨�B)→ (�A ∨�B)

The logic resulting from adding these principles to B we will call BEq. The first
two principles, a rule and axiom, are found in all relevant modal logics obtained
from classes of frames with a binary modal accessibility relation. The next two
principles are the relatively well-known principles (T) and (4). The final one is
less well-known and deserves further comment. Axiom (M5) is, like all the axioms
above, valid on classical Kripke frames, called ‘partition frames’ below, for S5, and it
plays an important role in the sequent system for S5 due to Ohnishi and Matsumoto
(1957).16 Ono (1977) discusses it in the context of intuitionistic S5-type logics, but
it has otherwise received little attention.

In the present setting, axioms (M5) arguably captures what is logically distinctive
about the equivalence frames. Indeed, adapting the work of Standefer (2023b), we
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(1) A→ B ⇒ �A→ �B (Mono)

(2) (�A ∧�B)→ �(A ∧B) (∧�)

(3) �A→ A (T)

(4) �A→ ��A (4)

(5) �(A→ B)→ (�A→ �B) (K)

(6) A→ �¬�¬A (B)

(7) ¬�¬A→ �¬�¬A (5)

(8) A⇒ �A (Nec)

Table 1: BS5 modal principles

could define the logic BS5 as B extended by the principles in table 1.17 BS5 is a good
point of comparison with BEq. This is because BS5 is incomparable with BEq while
also being a plausible S5-type extension of B.18

Before proceeding, it will be useful to have the classical Kripke frames for S5 on
the table.

Definition 10 (Partition frame, universal frame). A partition frame is a pair 〈W,S〉
where W 6= ∅ and S is an equivalence relation on W .

A universal frame is a partition frame where S = W ×W .

The definitions of model and validity and the truth conditions for the classical con-
nectives are all standard, so we omit them here. Since we are going to be concerned
only with the frames where S is an equivalence relation, we adopt the name ‘partition
frame’, to distinguish them from the more general Kripke frames that permit alter-
native accessibility relations. As is well known, both the class of partition frames and
the narrower class of universal frames generate the logic S5, which can be axiomatized
in classical logic using the modal principles for BS5 from table 1, understanding the
implication classically, and an axiomatization of classical logic.19 Standefer (2023b)
showed that these three presentations of S5 diverge when translated over to relevant
logics.

15This is also called (C) by Chellas (1980) and (�C) by Fuhrmann (1990)
16In the present context of Routley-Meyer frames with a modal accessibility relation, (M5) is

valid on frames where S is Euclidean, meaning that if Sab and Sac, then Sbc, whereas (5) is not.
17We note that this axiomatization is somewhat redundant. The redundancies are to facilitate

comparisons.
18These are not the only plausible candidates for S5-type extensions of B. Standefer (2023b;

2025a) discusses others, and Ferenz (2024b) identifies another, based on a correspondence with
monadic quantified logic.

19See Mints (1992), Humberstone (2016), or Garson (2018) for details and discussion.
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While BS5 is, in many ways, a good candidate for an S5-type logic over B, it fails
to have many common S5 theorems among its theorems, such as (M5), so it is worth
considering other candidate logics.

Lemma 11. The axiom (M5) is not a theorem of BS5.

Proof. A countermodel can be obtained using John Slaney’s program MaGIC.20 We
leave finding a countermodel to the interested reader.

One can strengthen the base logic from B to R, if one wants, and it will not result
in (M5) becoming derivable. Thus, the extension of B with the principles (Mono),
(∧�), (T), and (4) is the common core of BEq and BS5. One can strengthen that
logic in two diverging ways, with one adding (M5) and the other adding (B), (5),
and (Nec).

There are frames for BS5, and associated soundness and completeness results.
We do not need to present details of those frames here.21 One consequence of the
preceding theorem, which we want to emphasize, is that the frames for BS5 are not,
in general equivalence frames. Some of them can supply counterexampless to (M5),
which rules out being equivalence frames. While BS5 does contain the (B) axiom,
the corresponding frame condition for that is: if Sab, then Sb∗a∗. This condition,
in general, falls short of symmetry. This is a point to which we return in the final
section, and it is crucial for seeing the novelty in the present work.

We will close this section by proving the soundness of BEq with respect to equiv-
alence frames for B. While most of the principles were shown sound by Stande-
fer (2025a), albeit in the context of equivalence frames for the logic R, we will reprove
the soundness of (M5) here.

Lemma 12. Let M be a model on an equivalence frame for B. If Sab, then a 
 �A
iff b 
 �A.

Proof. Suppose Sab. Since S is an equivalence relation, [a] = [b]. Suppose a 
 �A.
This is the case iff [a] ⊆ [[A]], which is equivalent to [b] ⊆ [[A]]. But this is b 
 �A,
as desired. The converse is similar.

Theorem 13. For all a ∈ K, if a 
 �(A ∨�B) then a 
 �A ∨�B.

20See Slaney (1995). Logan (2024, 15ff.) provides a tutorial on the use of MaGIC.
21The interested reader can consult the discussion of RS5 by Standefer (2023b; 2025a) or the

general discussion of modal frames by Fuhrmann (1990).
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Proof. Let a be an arbitrary world in K. Suppose that a 
 �(A ∨ �B) and that
a 6
 �A. Then there is some world b such that Sab and b 6
 A. We show that
a 
 �B. Suppose not. Lemma 12 shows that the same �-formulas are true at a
and b. Thus, b 6
 �B. But then a 6
 �(A ∨ �B). So, by reductio, a 
 �B as
required.

It will be useful to prove a lemma demonstrating that an implication we will need
is, in fact, a theorem of BEq. To justify some of the steps of that lemma, as well as
some of the moves we will make in the next section, we will list, without proof, some
rules that hold for many relevant logics, including BEq.

Lemma 14. The logic BEq is closed under the following rules.

• A→ B,B → C ⇒ A→ C

• A→ (B ∨ C), C → D ⇒ A→ (B ∨D)

Lemma 15. (�A ∨�B)→ �(�A ∨�B) is a theorem of BEq.

Proof. The derivation is as follows.

(1) �A→ (�A ∨�B), by (Ax3)

(2) ��A→ �(�A ∨�B), by (1) and (Mono)

(3) �A→ ��A, by (4)

(4) �A→ �(�A ∨�B), by (2), (3), and lemma 14

(5) �B → �(�A ∨�B), similar to the preceding

(6) (�A ∨�B)→ �(�A ∨�B), by (Ru1), (Ru2), and (Ax5)

We will need this formula for a step in one of the parts of the completeness proof of
the next section.
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4 Completeness

In this section we will prove the completeness of BEq with respect to equivalence
frames for B. We will do this by using a variation on the Henkin-style canonical
model construction commonly used to show completeness for relevant logics. Some
of the steps and lemmas are well-known, so we will not reprove them here.22 We
will, instead, focus on the changes that need to be made in order to carry the proof
through, as well as definitions needed to make the proof self-contained.

Let us begin by defining some important concepts and stating a standard lemma.
Then, we will define the canonical frame.

Definition 16 (Theory, prime theory). A set Γ of formulas is a BEq-theory iff both
(i) whenever A→ B is a theorem of BEq and A ∈ Γ, then B ∈ Γ, and (ii) if A ∈ Γ
and B ∈ Γ, then A ∧B ∈ Γ.

A theory Γ is prime iff whenever A ∨B ∈ Γ, then either A ∈ Γ or B ∈ Γ.

Definition 17 (Inconsistent pair). Let Σ and ∆ be theories. Σ ` ∆ iff there are
A1, . . . , An ∈ Σ and B1, . . . , Bm ∈ ∆ such that (A1 ∧ . . . ∧ An)→ (B1 ∨ . . . ∨Bm) is
a theorem of BEq.

If Σ ` ∆, we say that (Σ,∆) is a BEq-inconsistent pair.
A pair of set of formulas (Σ,∆) is a BEq-consistent pair iff it is not a BEq-

inconsistent pair.

Lemma 18 (Belnap-Gabbay Extension Lemma). If (Σ,∆) is a BEq-consistent pair
of sets of formulas, then there is a prime theory Γ ⊇ Σ such that Γ ∩∆ = ∅.

The Belnap-Gabbay Extension Lemma is a standard tool in the construction of prime
theories to be used in completeness proofs for relevant logics.

Next, we can proceed to define the canonical frame for BEq. The parts apart
from S are standard.

• K is the set of all prime BEq-theories.

• a ∈ N iff BEq ⊆ a.

• Rabc iff for all B,C, if B → C ∈ a and B ∈ b, then C ∈ c.

• a∗ = {A : ¬A 6∈ a}.
22Details and proofs are provided by Routley et al. (1982), especially chapter 4, or Restall (2000),

especially chapters 5 and 11.
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To the preceding, we need to add the canonical accessibility relation, S. In order to
define S, it will be useful to define an auxiliary concept.

• Given a set of formulas x, �−x = {A ∈ L : �A ∈ x}.

Now, we can define the modal accessibility relation S for the canonical frame.

• Sab if and only if (i) �−a ⊆ b and (ii) �−b ⊆ a.

It remains to show that the canonical frame obeys the various conditions and that
in the canonical model, truth at a world coincides with membership in that world.
We note a standard lemma, whose proof we omit.

Lemma 19. In the canonical frame, a ≤ b if and only if a ⊆ b.

Next, we will show that S is an equivalence relation.

Lemma 20. S is reflexive.

Proof. This is immediate from (T) being a theorem of BEq.

Lemma 21. S is symmetric.

Proof. This is immediate from the definition.

Lemma 22. S is transitive.

Proof. Suppose that Sab and Sbc. We show that Sac. Let A ∈ �−a. Then, by the
(4) axiom, �A ∈ �−a. So, �A ∈ b and A ∈ c. The converse is proven in the same
way, with an appeal to symmetry.

Next, we will show that the canonical frame obeys condition (i) on being an
equivalence frame.

Theorem 23. If a ≤ a′ and Sa′b′ there is some world b such that Sab and b ≤ b′.

Proof. Suppose that a ≤ a′ and Sa′b′. Let ∆ be the set of formulas D such that
D /∈ b′. And let Σ be the set of formulas �S such that S /∈ a. Then we know that

�−a 6` ∆ ∪ Σ.

For, if �−a ` ∆ ∪ Σ, then there would be A1, ..., An ∈ �−a, D1, ..., Dm ∈ ∆ and
�S1, ...,�Sp such that

(1) ` (A1 ∧ ... ∧ An)→ ((D1 ∨ ... ∨Dm) ∨ (�S1 ∨ ... ∨�Sp))
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But then, by regularity,

(2) ` �(A1 ∧ ... ∧ An)→ �((D1 ∨ ... ∨Dm) ∨ (�S1 ∨ ... ∨�Sp))

And, since
(3) ` (�S1 ∨ ... ∨�Sp)→ �(�S1 ∨ ... ∨�Sp)

we have

(4) ` �(A1 ∧ ... ∧ An)→ �((D1 ∨ ... ∨Dm) ∨�(�S1 ∨ ... ∨�Sp)).

From (4) and axiom (M5),

(5) ` �(A1 ∧ ... ∧ An)→ (�(D1 ∨ ... ∨Dm) ∨�(�S1 ∨ ... ∨�Sp)).

Thus, �(D1∨ ...∨Dm)∨�(�S1∨ ...∨�Sp) ∈ a. But a is prime, so either �(D1∨ ...∨
D1) ∈ a or �(�S1∨...∨�Sp) is in a. If �(D1∨...∨Dm) ∈ a, then �(D1∨...∨Dm) ∈ a′
and so D1∨...∨Dm ∈ b. b is also prime, and so one of the Di is in b for some 1 ≤ i ≤ m
and this is contrary to the construction of ∆. Similarly, if �(�S1 ∨ ... ∨ �Sp) ∈ a,
then, by (T), �S1∨ ...∨�Sp ∈ a and so by primeness and (T), for at least one of the
Si, Si ∈ a, contrary to the construction of Σ. This completeness the reductio and
shows that �−a 6` ∆ ∪ Σ.

By the Belnap-Gabbay lemma, there is a prime theory b such that �−a ⊆ b and
b∩ (∆∪Σ) = ∅. We show that Sab. It suffices to show that �−b ⊆ a. Suppose that
�A ∈ b. Then �A /∈ Σ. By the definition of Σ, A ∈ a. Generalising, �−b ⊆ a.

Moreover, b ∩∆ = ∅ and so, by the definition of ∆, b ⊆ b′. Hence, b ≤ b′, ending
the proof of the lemma.

It is worth emphasizing that in our proof that the canonical frame obeyed con-
dition (i), we used both (M5) and (T). We have not yet found a way to prove the
preceding theorem without appeal to (T).

As is usual, we will define the canonical valuation V for the canonical model, as
follows.

• V (p) = {a ∈ K : p ∈ a}.

That V (p) is closed upwards under the heredity ordering is immediate from lemma
19. The canonical model is the canonical frame with the canonical valuation. It
remains to prove the Truth Lemma, showing that in the canonical model, truth and
membership coincide. There is only one new cases that we need to prove, namely
the case for �.
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Lemma 24. For all worlds a ∈ K and formulae A, �A ∈ a if and only if for all
b ∈ K such that Sab, b ∈ A.

Proof. =⇒ follows from the definition of S for the canonical model.
⇐= Let a be an arbitrary world (i.e. prime theory). Suppose that �B /∈ a. We

construct a world b such that B /∈ b and Sab. Let ∆ be the set of formulae �D such
that D /∈ a. And let ∆′ be the disjunctive closure of {B} ∪∆.

We show that �−a 6` ∆′. For if �−a ` ∆′ we would have

(1) ` (A1 ∧ ... ∧ An)→ (B ∨ (�D1 ∨ ... ∨�Dm)),

for some A1, ..., An ∈ �−a and �D1, ...,�Dm ∈ ∆. By lemma 15 and (1),

(2) ` (A1 ∧ ... ∧ An)→ (B ∨�(�D1 ∨ ... ∨�Dm)).

From (2) and (Mono) we have

(3) ` �(A1 ∧ ... ∧ An)→ �(B ∨�(�D1 ∨ ... ∨�Dm)).

We now appeal to an instance of axiom (M5):

(4) ` �(B ∨�(�D1 ∨ ... ∨�Dm))→ (�B ∨�(�D1 ∨ ... ∨�Dm)).

(3) and (4) give us

(5) ` �(A1 ∧ ... ∧ An)→ (�B ∨�(�D1 ∨ ... ∨�Dm))

and an appeal to axiom (T) yields

(6) ` �(A1 ∧ ... ∧ An)→ (�B ∨�D1 ∨ ... ∨�Dm).

It follows that �B ∨ �D1 ∨ ... ∨ �Dm ∈ a. But a is prime and �Di /∈ a for
1 ≤ i ≤ m. So, �B ∈ a contrary to assumption. Thus, by reductio, we conclude
that �−a 6` ∆′. In other words, (�−a,∆′) is an BEq-consistent pair. By the Belnap-
Gabbay Extension Lemma, we can extend �−a to a prime theory b such that Sab
and b ∩∆′ = ∅.

To verify that Sab, we need to show that �−a ⊆ b and �−b ⊆ a. The former is
immediate from the construction of b. For the latter, suppose that C ∈ �−b, and
suppose for reductio that C 6∈ a. From the former assumption it follows that �C ∈ b.
From the latter assumption, it follows that �C ∈ ∆, and so �C ∈ ∆′. Therefore,
�C ∈ b ∩∆′, contradicting b ∩∆′ = ∅. Therefore, C ∈ a, as desired.

Since B ∈ ∆′ and b ∩∆′ = ∅, it follows that B 6∈ b. Therefore, we can conclude
that we have the desired theory b such that Sab and B 6∈ b.
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Lemma 25. For all worlds a ∈ K and formulae A, A ∈ a if and only if a 
 A.

Proof. The proof is by induction on the complexity of A. The preceding lemma
handles the only novel case, namely the case when A is of the form �B.

The pieces having been assembled, we can now state the completeness theorem
with a sketch of the proof.

Theorem 26. If A is valid in the class of all equivalence frames for B, then A is a
theorem of BEq.

Proof. Suppose A is not a theorem of BEq. Then (BEq, {A}) is a BEq-consistent
pair. In the canonical model, there is a world a ∈ N such that A 6∈ a, which suffices
to show that A is not valid in the class of all equivalence frames for B.

It is worth noting that, although the rule (Nec), A⇒ �A, does not hold for BEq,
it can be added. If one does add (Nec), then one needs to add the frame condition
that if Sab and a ∈ N , then b ∈ N . The resulting logic is sound and complete with
respect to the resulting class of frames.

We will also note, without proof, that the completeness result offers an alternative
route to showing that BEq enjoys the variable-sharing property, that if A → B is
valid, then A and B share an atom. The results of Standefer (2025a) show that
BEq enjoys the variable-sharing property by being a sublogic of a logic that has
the variable-sharing property, as that property is preserved downwards to sublogics.
Alternatively, the same proof method of theorem 4 of Standefer (2020) can be used
to demonstrate directly that BEq enjoys the variable-sharing property.23

With completeness for BEq established, we will now turn to some other metathe-
oretic results.

5 Metacompleteness

In this section we will present a metacompleteness result for the logic BEq.Nec, which
is BEq extended with the rule (Nec).24 Metavaluations are a tool introduced by Meyer
(1971; 1976) that mix features of proof theory and algebras. Meyer’s metavaluations
only worked for stronger relevant logics, but they were generalized to weaker logics,

23For more on the importance of variable-sharing, see Standefer (2025b).
24We will note that our nomenclature for logics is less systematic than the useful dotting conven-

tion of Ferenz (2023). BEq.Nec extends BEq with a rule, while BEq extends B with several modal
axioms and a rule. To be more systematic, one could write B.Eq and B.EqNec, but, as we are not
discussing a wide range of logics, we will stick with the present nomenclature.
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including B, by Slaney (1984). Seki (2013) generalized Slaney’s metavalutions to a
range of relevant modal logics.25 In this section, we will use metavaluations to obtain
some results concerning a strengthening of BEq.

First we define metavaluations, following Slaney and Seki.

Definition 27. A metavaluation for L is a pair of functions m and m∗ from L to
{0, 1} such that the following hold.

• m(p) = 0, m∗(p) = 1, for all p ∈ At.

• m(¬B) = 1 iff m∗(B) = 0;
m∗(¬B) = 1 iff m∗(B) = 0.

• m(B ∧ C) = 1 iff m(B) = 1 and m(C) = 1;
m∗(B ∧ C) = 1 iff m∗(B) = 1 and m∗(C) = 1.

• m(B ∨ C) = 1 iff m(B) = 1 or m(C) = 1;
m∗(B ∨ C) = 1 iff m∗(B) = 1 or m∗(C) = 1.

• m(B → C) = 1 iff (i) `L B → C, (ii) if m(B) = 1 then m(C) = 1, and (iii) if
m∗(B) = 1, then m∗(C) = 1;
m∗(B → C) = 1.

• m(�B) = 1 iff both `L �B and m(B) = 1;
m∗(�B) = 1 iff m∗(B) = 1.

A formula A holds on a metavaluation m,m∗ iff m(A) = 1.

Throughout this section, L will be BEq.Nec. For those familiar with metavaluations,
we are working with the clauses for M1t metavaluations.

Slaney showed that there is an important connection between metavaluations
and provability, which was extended by Seki. We will present it here for BEq.Nec,
although it was proved for other logics by Slaney and Seki.

Theorem 28. For all formulas A and metvaluations m,m∗, the following are true.

• If m(A) = 1, then `BEq.Nec A.

• If m∗(A) = 0, then `BEq.Nec ¬A.

Proof. These are proved by simultaneous induction on the complexity of A. The
proof is essentially the same of that of Slaney and Seki.

25Brady (2017) provides an excellent overview of work on metavaluations.

17



The main result concerning metavaluations is the following.

Theorem 29. For all formulas A and metvaluations m,m∗, if `BEq.Nec A, then
m(A) = 1.

Proof. This is proved by induction on the length of the proof of A. Most of the cases
are covered by the work of Seki (2013). The only new case is for (M5).

The provability clause for m is satisfied, so we show that if m(�(A ∨�B)) = 1,
then m(�A ∨�B)) = 1, and if m∗(�(A ∨�B)) = 1, then m∗(�A ∨�B)) = 1.

Suppose that m(�(A ∨ �B)) = 1. It follows that `BEq.Nec �(A ∨ �B) and
m((A ∨ �B)) = 1. This implies m(A) = 1 or m(�B) = 1. If m(A) = 1, then
`BEq.Nec A. By (Nec), this implies `BEq.Nec �A, so m(�A) = 1. This suffices for
m(�A ∨ �B) = 1. Suppose that m(�B) = 1. This suffices for m(�A ∨ �B) = 1.
Therefore, m(�A ∨�B) = 1.

Next, suppose that m∗(�(A ∨�B)) = 1. Using the evaluation clause for � with
m∗, we have m∗(�(A ∨ �B)) = m∗(A ∨ �B), and m∗(A ∨ �B) = 1 iff m∗(A) = 1
or m∗(�B) = 1. Since m∗(A) = m∗(�A), we can conclude m∗(A ∨ �B) = 1
iff m∗(�A ∨ �B) = 1. By assumption, m∗(�(A ∨ �B)) = 1, so it follows that
m∗(�A ∨�B) = 1, as desired.

As a corollary of the preceding two theorems, we obtain the disjunction property for
BEq.Nec.

Corollary 30. If `BEq.Nec A ∨B, then either `BEq.Nec A or `BEq.Nec B.

Proof. Immediate from the preceding two theorems.

From this we can obtain the admissibility of the rule form of disjunctive syllogism,
aka γ.26

Corollary 31. The rule ¬A,A ∨B ⇒ B holds for BEq.Nec.

Proof. Suppose `BEq.Nec ¬A and `BEq.Nec A ∨ B. From the previous corollary, it
follows that either `BEq.Nec A or `BEq.Nec B. BEq.Nec is consistent in the sense that it
does not have A∧¬A as a theorem, for any formula A, as it is a sublogic of S5, which
is consistent. Since `BEq.Nec ¬A, it follows that 6`BEq.Nec A. Therefore, `BEq.Nec B, as
desired.

26 The rule γ has a long history in the study of relevant logics. Meyer et al. (1984) and Øgaard
(2019; 2021) provide critical discussion of γ in relevant logics. For some results concerning γ in
relevant modal logics, see Mares and Meyer (1992) or Seki (2011; 2012).
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These results do not immediately extend to BEq, as the provability claims of
the consequents may fail in BEq. In the proof of theorem 29, we needed to appeal
to (Nec) in one place, and, as far as we can tell, that appeal is essential for the
proof using the metavaluational techniques. Showing that BEq has the disjunction
property, if it indeed does, will have to proceed by other means.

6 Halldén Completeness

The previous section shows that BEq.Nec has the disjunction property, that is, if
A ∨ B is a theorem of the logic, then either A is a theorem or B is a theorem. Our
proof relies on the logic’s being closed under the rule of necessitation, and so cannot
be extended to BEq. In the present section, we show that BEq has a weaker property,
that is, Halldén completeness.

Definition 32. A logic L is Halldén complete if and only if, for any formulae A and
B, if `L A ∨ B, then at least one of A or B is a theorem of L or A and B share a
propositional variable.

The method we use to prove this is a modification of van Benthem and Hum-
berstone’s (1983) proof for modal logics based on classical logic.27 The idea is to
take two arbitrary non-theorems of BEq, A and B that do not share any variables,
and show that we can find a model that falsifies A ∨ B. We do so by gluing to-
gether a model invalidating A and one invalidating B. The model that results from
the gluing is related to both of the original models by functions called “relevant
pseudo-epimorphisms” or rp-morphisms. An rp-morphism for BEq frames is defined
as follows:

Definition 33. Given two BEq frames F = 〈K,N,R, S,∗ 〉 and F ′ = 〈K ′, N ′, R′, S ′,∗ ′〉,
an rp-morphism is a function f from K onto K ′ such that the following seven con-
ditions hold:

1. if a ∈ N then f(a) ∈ N ′;

2. for all a ∈ N ′ there is some x ∈ N , such that f(x) = a;

3. if Rabc then R′f(a)f(b)f(c);

4. if Sab then Sf(a)f(b);

27For the extension to other relevant modal logics, see Mares (2003) and Seki (2015).
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5. if R′f(a)bc then there are x, y ∈ K, Raxy, f(x) = b, and f(y) = c;

6. if S ′f(a)b then there is an x ∈ K, Sax and f(x) = b;

7. f(a∗) = f(a)∗.

Before we can prove a key theorem, we need to define one concept.

Definition 34. An equivalence frame 〈K,N,R, S,∗ 〉 is R-serial iff for all a ∈ K,
there are b, c ∈ K such that Rabc.

Equivalence frames for B need not be R-serial. Nonetheless, restricting to R-serial
frames does not change the logic. The reason is that the canonical frame is R-serial,
in virtue of the trivial theory, the set of all formulas, being included in it.28 This
fact carries over from frames for B to equivalence frames. We will need to appeal to
R-seriality in a key step of the next theorem.

Theorem 35. Let F and F ′ be R-serial equivalence frames and f an rp-morpshism
from F to F ′. Let V and V ′ be value assignments on F and F ′ respectively, such
that for all propositional variables p, a ∈ V (p) if and only if f(a) ∈ V ′(p). Then, for
all formulae A, a 
 A if and only if f(a) 
 A.

Proof. By induction on the length of formulae.
Base Case. For all propositional variables a 
 p if and only if f(a) 
 p by the

condition of the lemma.
Case. A is a conjunction, B ∧ C. By the inductive hypothesis, a 
 B if and

only if f(a) 
 B and a 
 C if and only if f(a) 
 C. So, by the truth condition for
conjunction, a 
 B ∧ C if and only if f(a) 
 B ∧ C.

Case. A is a negation, ¬B. Suppose that a 
 ¬B. Then a∗ 6
 B. By the
inductive hypothesis, f(a∗) 6
 B. By condition 7 of the definition of an rp-morphism,
f(a∗) = f(a)∗. Hence f(a)∗ 6
 B and so f(a) 
 ¬B.

Going the other way, suppose that f(a) 
 ¬B. Then f(a)∗ 6
 B, and so f(a∗) 6

B. By the inductive hypothesis, a∗ 6
 B and so a 
 ¬B.

Case. A is an implication, B → C. Suppose that a 
 B → C. Then for all
b, c ∈ K, if Rabc and b 
 B, then c 
 C. By R-seriality, there are x′, y′ ∈ K ′ such
that Rf(a)x′y′. Then by condition 5 of the definition of an rp-morphism, there are
x, y ∈ K such that Raxy, f(x) = x′ and f(y) = y′. By the inductive hypothesis, if
x′ 
 B, then y′ 
 C.

28Mares (2003) used the condition of total seriality, which added S-seriality to R-seriality. The
equivalence frames all satisfy S-seriality, so we omit it here.
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Now suppose that f(a) 
 B → C. Then for all b, c ∈ K ′, if R′f(a)bc and
b 
 B, then c 
 C. Assume that Raxy. By condition 3 of the definition of an
rp-morphism, Rf(a)f(x)f(y). By the inductive hypothesis, if x 
 B then y 
 C
and so a 
 B → C.

Case. A is a necessitive, �B. Suppose that a 
 �B. Then for all b ∈ K, if
Sab then b 
 B. Suppose now that S ′f(a)x′. Then, by condition 6 of the definition
of an rp-morphism, Sax where f(x) = x′. By the inductive hypothesis, x′ 
 B.
Generalising, f(a) 
 �B.

Now suppose that f(a) 
 �B. Suppose also that Sax. By condition 4 of the
definition of an rp-morphism, Sf(a)f(x). By the truth condition for necessity, f(x) 

B and by the inductive hypothesis x 
 B. Generalising, a 
 �B.

Now suppose that for some a ∈ N ′, a 6
 A. By condition 3 of the definition of an
rp-morphism, there is some x ∈ N such that f(x) = a. Thus, there is some x ∈ N
such that x 6
 A. This shows thatM invalidates all the fomulae thatM′ invalidates.
But we are going to need more than this to prove Halldén completeness. In order to
provide the further material we need, we follow van Benthem and Humberstone and
define rp-fusions of BEq frames:

Definition 36. Let F1 = 〈K1, N1, R1, S1,
∗1〉 and F2 = 〈K2, N2, R2, S2,

∗2〉 be BEq
frames and a1 ∈ K1 and a2 ∈ K2. (F , a) is an rp-fusion of (F1, a1) and (F2, a2)
if there are rp-morphisms f1 and f2 from F to F1 and F2 respectively such that
f1(a) = a1 and f2(a) = a2.

For any two such (F1, a1) and (F2, a2), we can construct an rp-fusion. The
constructed frame is just the product of F1 and F2: The product, F1 × F2 is
F = (K,N,R, S, ∗) where K = {(b1, b2) : b1 ∈ K1 ∧ b2 ∈ K2}, N = {(b1, b2) : b1 ∈
N1 ∧ b2 ∈ N2}, R(b1, b2)(c1, c2)(d1, d2) if and only if both R1b1c1d1 and R2b2c2d2,
S(b1, b2)(c1, c2) if and only if both S1b1c1 and S2b2c2, and (b1, b2)

∗ = (b∗11 , b
∗2
2 ). Then

the rp-fusion of (F1, a1) and (F2, a2) is (F , (a1, a2)). The rp-morphisms f1 and f2 are
projection functions, that is, f1(b1, b2) = b1 and f2(b1, b2) = b2. It is easy, although
tedious, to prove that this product construction produces rp-fusions of BEq frames.

Now that we have rp-fusions, we can prove Halldén completeness.

Theorem 37. The logic BEq enjoys Helldén completeness.

Proof. Suppose that A and B are non-theorems of BEq that do not share any propo-
sitional variables. Then, by completeness with respect to R-serial frames, there is an
R-serial frame F1 = 〈K1, N1, R1, S1,

∗1〉 and a1 ∈ N1 such that a1 6
 A and similarly
an R-serial frame F2 = 〈K2, N2, R2, S2,

∗2〉 and a2 ∈ N2 such that a2 6
 B. Let F
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be the product of F1 and F2. We construct a value assignment V on F such that
for all variables p in A, (b1, b2) ∈ V (p) if and only if b1 
 p, and for all q in B,
(b1, b2) ∈ V (q) if and only if b2 
 q. By theorem 35, (a1, a2) 6
 A and (a1, a2) 6
 B.
Hence, by the truth condition for disjunction, (a1, a2) 6
 A ∨ B. So, by soundness,
A ∨B is not a theorem of BEq.

7 Possibility

We have not, so far, discussed possibility. As is common for work on relevant modal
logics, we will define possibility as dual to necessity, namely ♦A is ¬�¬A. With this
definition in mind, we can define a derived accessibility relation for ♦, S♦.

S♦ab =df Sa∗b∗

The truth condition for ♦ comes out as the expected one using this relation, as
proven in the following fact.

Fact 38. For every world a, a 
 ♦A if and only if there is some world b such that
S♦ab and b 
 A.

Proof.

1. a 
 ♦A iff a 
 ¬�¬A
2. iff a∗ 6
 �¬A
3. iff ∃c ∈ K(Sa∗c ∧ c 6
 ¬A)
4. iff ∃b ∈ K(Sa∗b∗ ∧ b∗ 6
 ¬A)
5. iff ∃b ∈ K(S♦ab ∧ b 
 A)

The equivalence between lines two and three holds due to the verification condition
for �. The equivalence between the third and fourth lines holds because, every b ∈ K
is such that for some c ∈ K, b = c∗.

From the definition, it follows that S♦ is an equivalence relation as well

Fact 39. S♦ is an equivalence relation.

Proof. 1. For reflexivity, let a be an arbitrary world. By definition, S♦aa if and only
if Sa∗a∗, which holds because S is reflexive.

2. For transitivity. suppose that S♦ab and S♦bc. By definition, Sa∗b∗ and Sb∗c∗,
hence by the transitivity of S, Sa∗c∗. Therefore, by definition, S♦ac.

3. For symmetry, suppose that S♦ab. By definition, Sa∗b∗. Hence, by the sym-
metry of S, Sb∗a∗ and so S♦ba.
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Thus, S♦ inherits many of the nice features of S. It is worth noting, however,
that in general, Sab need not imply S♦ab, or the converse. Requiring that S = S♦

would result in coordinated equivalence frames, defined by Standefer (2025a).

Definition 40 (Coordinated equivalence frames). Coordinated equivalence frames
are those equivalence frames where for all a, b ∈ K, if [a] = [b], then [a∗] = [b∗].

We will now prove the indicated equivalence.

Fact 41. Let F be an equivalence frame for B. Then the following are equivalent.

(1) If [a] = [b], then [a∗] = [b∗].

(2) S = S♦.

Proof. For one direction, assume (1). Suppose that Sab, so [a] = [b]. By (1),
[a∗] = [b∗], so Sa∗b∗, which is to say S♦ab. Next, suppose S♦ab. This implies Sa∗b∗,
which in turn implies [a∗] = [b∗]. From the assumption, this gives us [a∗∗] = [b∗∗].
Given that c∗∗ = c, for all c ∈ K, [a] = [b], so Sab, as desired.

For the other direction, assume (2) and suppose that [a] = [b]. By assumption,
Sab, so S♦ab, by (2). This means that Sa∗b∗, so [a∗] = [b∗], as desired.

Requiring that S = S♦ significantly strengthens the logic BEq, as it results in both
(B) and (5) both being valid, as shown by Standefer (2025a). As avoiding (B) and
(5) is touted as one of the features of BEq, we will not pursue investigation of the
coordinated equivalence frames here.29

S♦ can be viewed as representing the situations that are open epistemic possibili-
ties, given the agent’s information knows. In general, S 6= S♦, and we think that this
may be useful when a belief operator, B, is added to the language and interpreted
using its own accessibility relation, SB. The relevant epistemic logician has the op-
tion of enforcing (or not) relations between belief and knowledge, as well as between
belief and open epistemic possibilities. A natural next step is exploring a richer,
multi-modal epistemic logic, as is common in classically-based epistemic logics, and
the distinction between S and S♦ provides additional flexibility for modeling different
epistemic scenarios.30 We leave this idea for future work, as adequate investigation
of multi-modal logics is outside the scope of the present paper.

29Standefer (2025a) proved a completeness result for the coordinated equivalence frames. While
that result was proven in the context of R, it can be carried out for B as well.

30See, for example, Stalnaker (2006).
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8 Conclusion

The main result of this paper is proving the completeness of BEq with respect to
equivalence frames for B. In addition, we have shown that BEq enjoys Halldén com-
pleteness. A slightly stronger logic, BEq.Nec has the disjunction property. These
features demonstrate that BEq and BEq.Nec are metatheoretically well-behaved log-
ics. It is worth noting that the results can be extended to many logics stronger than
B, although the metavaluational techniques are more sensitive to the choice of base
logic.

We close with a lingering open question. We have provided a completeness proof
for equivalence frames, where the accessibility relation is an equivalence relation.
In particular, the relation is symmetric. In the present setting, the (B) axiom is
insufficient for delivering the frame condition of symmetry in the canonical frame.
Inspection of our proofs reveal that, given the definition of the canonical modal
accessibility relation, we need to appeal to (M5), as well as (T). The open question
is: are there some axioms that can either be used instead of (M5) or in addition to it
that can be used to obtain a completeness result with respect to symmetric frames
that are not necessarily reflexive or transitive? It would be good to have either a
proof of completeness that did not require the (T) axiom or a proof that no such
result is possible.
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