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Abstract. We present an extension of the basic revision theory of circular definitions
with a unary operator, 2. We present a Fitch-style proof system that is sound and
complete with respect to the extended semantics. The logic of the box gives rise to a
simple modal logic, and we relate provability in the extended proof system to this modal
logic via a completeness theorem, using interpretations over circular definitions, analogous
to Solovay’s completeness theorem for GL using arithmetical interpretations. We adapt
our proof to a special class of circular definitions as well as to the first-order case.

§1 Introduction One of the important discoveries in provability logic is the
connection between Peano arithmetic (PA) and the modal logic GL, first demon-
strated by Robert Solovay.1 Solovay showed that GL is complete with respect to
provability in PA under all so-called arithmetical interpretations. These interpre-
tations connect necessity in the modal language to provability predicates in the
arithmetical language.

Revision theory is a general theory of circular definitions. It was originally de-
veloped as a theory of truth by Anil Gupta and, independently, Hans Herzberger,
with important early contributions by Nuel Belnap.2 The theory was generalized to
a theory of circular definitions in (Gupta 1988–89), which was further elaborated
in (Gupta & Belnap, 1993).3

In this paper, we will show that there is a connection, similar to the one between
PA and GL, between the circular definitions of revision theory and a particular
modal logic, which we call “RT ,” for revision theory.4 We will prove that RT is
complete with respect to validity under all D-interpretations for all sets of circular
definitions D .

The modal logic RT arises naturally from an extension of revision theory that
we will present below. (Gupta & Standefer, 2014) presents an extension of revision
theory that uses different primitives, which have independent philosophical inter-
est. The extension presented here adds a unary connective, 2, to basic revision
theory. This connective can be glossed as saying, roughly, “according to the current
hypothesis,” or, in the context of a revision sequence, “at the previous stage.” The
modal logic RT is the logic one obtains from viewing the box simply as a modal
operator.

1 See (Solovay, 1976) or (Boolos, 1993).
2 See (Gupta, 1982), (Herzberger, 1982), and (Belnap, 1982), respectively.
3 Many logicians have done fruitful work on revision theory. A partial list of contributions

includes (Kremer, 1993), (Yaqūb, 1993), (Antonelli, 1994), (Chapuis, 1996), (Orilia,
2000), (Löwe & Welch, 2001), (Welch, 2001), (Kühnberger et al., 2005), (Horsten et al.,
2012), (Asmus, 2013), and (Bruni, 2013).

4 An anonymous referee has pointed out that this logic is also known in the literature as
“KD!”.

c© 2014 Association for Symbolic Logic

1 doi:10.1017/S1755020300000000
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The addition of 2 to revision theory increases the expressive power of the theory.
The most striking demonstration of the increase in expressive power is that the box
permits the definition of an object language correlate of the definitional clauses of
a set of circular definitions. Whenever a circular definition, say,

Gx=Df A(x,G),

is used, then the object language sentence

∀x(Gx ≡ 2A(x,G))

will be valid. In basic revision theory, it is not generally true that a circular
definitional clause will be reflected in an object language validity.

We will begin by motivating and presenting the fundamental definitions for ex-
tended revision theory (§2). Once the basics are in place, we will state an important
regularity theorem for the extended theory, the proof of which is left to an appendix
(§4). We briefly present the rules to add to the Fitch-style proof system for basic
revision theory to obtain a complete proof system for extended revision theory. We
then prove three Solovay-type completeness theorems, two for RT (§3.1, §3.2) and
one for its first-order form RTQ (§3.3). The proof of §3.2 uses a notion from basic
revision theory, that of finite definition, and in §5, we explain how to generalize this
notion to the extended theory.

§2 An extension of revision theory In this section, we will present an
extension of revision theory.5 Revision theory provides a semantic treatment of
circularly defined predicates.6 These predicates may have circular and interdepen-
dent definitions of the following form.7

G1(x1)=DfA1(x1, G1, . . . , Gk)
G2(x2)=DfA2(x2, G1, . . . , Gk)

...
Gk(xk)=DfAk(xk, G1, . . . , Gk)

Any of the definienda, Gi, may appear in any of the definientia, Aj . In any Ai,
only the variables xi may occur freely. We will adopt the convention of using G for
circularly defined predicates.

We will work with languages containing constants and variables but no function
symbols. We start with a ground model M(= 〈D, I〉) that interprets a base language
L , which is extended to a new language, L +, that contains the circularly defined
predicates and 2. A set of circular definitions D provides a revision operator,
∆D,M , which is used to revise hypotheses about what satisfies the Gi.

8 Given a

5 For a full exposition of basic revision theory, see (Gupta & Belnap, 1993).
6 Revision theory can handle other types of expressions, but we will focus on predicates

here.
7 Sets of definitions can be infinite.
8 We will use ‘∆’ for revision operators in the extended theory and, when needed, ‘δ’ for

revision operators in the basic theory.
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hypothesis h about what satisfies Gi and information from the ground model, the
revision operator generates a new hypothesis, ∆D,M (h). The revision operator can
be iterated, and these possibly transfinite sequences of hypotheses form revision
sequences, which are central to the semantics of revision theory.

We will now explain this sketch in more detail. We begin by motivating the new
definition of hypothesis and we define some important related concepts, including
similarity, correspondence and falling under a hypothesis (§2.1). These concepts are
used to define revision of hypotheses and to state the semantic clauses for the box
and for circularly defined predicates (§2.2). These two sections cover the basics of
extended revision theory. In §2.3, we state the definitions of revision sequences and
of validity, which are basically unchanged from basic revision theory. Finally, we
explain how to modify a Fitch-style proof system for basic revision theory so that
it is sound and complete with respect to semantic consequence in extended revision
theory (§2.4).

2.1 Hypotheses and related definitions In extended revision theory, the
hypotheses are used to interpret not only the circularly defined predicates, but also
all boxed formulas, formulas whose main connective is 2. Thus, hypotheses must
be extended from guesses about satisfaction for the definienda to guesses about
satisfaction for the whole language.9 This presents some immediate difficulties, for
we would like formulas that are not identical but intuitively “say the same thing,”
such as 2∃xRxy and 2∃yRyz, to be satisfied by precisely the same objects. To
overcome this difficulty, we define hypotheses so that they are certain equivalence
classes of pairs of formulas and assignments to variables.

To define hypotheses, we must introduce the auxiliary concept of similarity, for
which we need a few definitions. Let F be the set of formulas of L + containing
no names. Let F1 be the set of formulas from F each of which contains at most
one free occurrence of each variable. Let VM be the set of assignments of values to
variables relative to a model M .

Informally, similarity is a relation between pairs of formulas and assignments.
Two pairs are similar when their formulas are the same up to relettering of bound
variables and their assignments agree on the free variables “in the same positions.”
Similarity matters because hypotheses will be defined as subsets of F ×VM closed
under similarity. The sense of relettering is made precise by the notion of an
alphabetic variant. We will say that A is a one-step variant of B iff A has an
occurrence a subformula ∀xC(x) where B has ∀yC(y), where y does not occur
freely in C and y is free for x in C. A is an alphabetic variant of B just in case
there is a sequence, A = D0, . . . , Dn = B, such that each Di is a one-step variant
of Di+1, with the possibility that n = 0.10

Definition 1 (Similarity)
Let A and B be formulas in F and v and v′ assignments to variables. Then,

〈A, v〉 is similar to 〈B, v′〉 iff A and B each have exactly n occurrences of free
variables and there is a formula C(x1, . . . , xn) ∈ F1, whose free variables are all
and only x1, . . . , xn, none of which occur in A or B, such that

9 One can define hypotheses differently so that they make guesses about a proper subset
of the language. We find the definition given below easier to use.

10 This definition is based on (Hughes & Cresswell, 1996, 240).
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1. for some variables y1, . . . , yn, A is an alphabetic variant of C(y1, . . . , yn),
2. for some variables z1, . . . , zn, B is an alphabetic variant of C(z1, . . . , zn), and
3. for all i ≤ n, v(yi) = v′(zi).

An example of similar pairs is 〈2∃xRxy, v〉 and 〈2∃yRyz, u〉, where v(y) = u(z).
Another example, is 〈Rxx, v〉 and 〈Ryz, u〉, where v(x) = u(y) = u(z). We note
that similarity is an equivalence relation.

We can now define hypotheses as sets of pairs of formulas and assignments that
are closed under similarity.

Definition 2 (Hypothesis)
A hypothesis h is a subset of F × VM such that for all similar pairs 〈A, v〉 and

〈B, u〉, 〈A, v〉 ∈ h iff 〈B, u〉 ∈ h

Since hypotheses are closed under similarity, they respect alphabetic variants. This
fact is used in showing that the classical quantifier rules are sound for arbitrary
hypotheses.11

Before proceeding to the semantics for the box, we must deal with the restriction
of the hypotheses to F . Consider the sentence 2Fb. We will want to say that 2Fb
is true relative to a hypothesis h just in case h contains the pair 〈Fb, v〉, for some
v, but no hypothesis will contain the pair 〈Fb, v〉, as Fb 6∈ F . To overcome this
hurdle, we allow pairs to correspond to pairs that are in some hypotheses.

Definition 3 (Corresponds)
A pair 〈A, v〉 corresponds in M to a pair 〈B, v′〉 iff B ∈ F , and there are se-

quences 〈x1, . . . , xn〉, 〈y1, . . . , ym〉 and 〈c1, . . . , cm〉 such that B has exactly the vari-
ables x1, . . . , xn, y1, . . . , ym free, no xi is yj, the ci are all distinct names, the yi are
all distinct variables, and

1. A = B(x1, . . . , xn, c1, . . . , cm),
2. for all i, 1 ≤ i ≤ n, v′(xi) = v(xi),
3. for all i, 1 ≤ i ≤ m, v′(yi) = I(ci).

12

When a pair 〈A, v〉 corresponds to a pair in the hypothesis h, we say that the pair
〈A, v〉 falls under h.

Definition 4 (Falling under)
Let C be a formula let v be an assignment to variables. Then 〈C, v〉 falls under

h relative to M , in symbols 〈C, v〉 ∈M h, iff there is a pair 〈C ′, v′〉 such that 〈C, v〉
corresponds in M to 〈C ′, v′〉 and 〈C ′, v′〉 ∈ h.

2.2 Revision semantics With the definitions of hypotheses and related no-
tions in hand, we can give the definition of revision and the semantics for the box.
First, a bit of notation. If h is a hypothesis, then M + h is the model just like M ,
except that h is used to interpret circularly defined predicates and boxed formulas.

Revision operators are defined as follows.

11 The formula in F1 in the definition of similarity plays a part in showing that identity
elimination is sound for arbitrary hypotheses. We believe that both the F1 clause and
the use of alphabetic variants can be dropped, in which case the revision process would
take care of the equivalences; the soundness proof for the resulting semantics would be
slightly more complex.

12 We will drop “in M” when talking about correspondence when the model is clear.
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Definition 5 (Revision operator)
The revision operator ∆D,M is an operation from hypotheses to hypotheses that

satisfies the following condition for all A ∈ F and v ∈ VM .

M + h, v |= A ⇔ 〈A, v〉 ∈ ∆D,M (h)

Before revision, hypotheses may disagree about base language formulas. This is
not a problem, since hypotheses are only used to determine satisfaction for boxed
formulas and for defined predicates. For formulas entirely in the base language, the
ground model is used to determine satisfaction.

The truth conditions for the box are simple: 2A is true in M + h just in case A
is true according to h. More generally,

M + h, v |= 2A ⇔ 〈A, v〉 ∈M h.

In terms of revised hypotheses,

M + ∆D,M (h), v |= 2A ⇔ M + h, v |= A.

The box is, in a sense, a cross-stage connective. Whether 2A is true at a stage
depends on the truth value of A at another stage. This differs from all the classical
connectives, which are same-stage connectives. Whether, say, A ⊃ B is true at a
stage depends only on the truth values of A and B at that same stage.

Since the definition of hypothesis differs from that of basic revision theory, we
will define the interpretation of the defined predicates. In basic revision theory,
the hypotheses directly assign extensions to defined predicates. In the extended
theory, extensions are not needed, as satisfaction for defined predicates is defined
as follows.13

M + h, v |= Gt ⇔ 〈A(t, G), v〉 ∈M h

One important philosophical aspect of revision theory is the claim that revision
yields better hypotheses.14 It will be worthwhile to elaborate on that claim with
respect to the box. Revision improves hypotheses with respect to the box in a
straightforward way: As revision proceeds, iterations of the box become increasingly
compositional. The result is a simple logic for the box.

The improvement brought about by revision can be captured in a regularity
theorem. As long as hypotheses agree on the formulas occurring in the set D of
circular definitions, in both definientia and definienda, then the hypotheses will
increasingly agree after revision. This motivates the following definitions.

Definition 6 (sub(D), ≡D)
Let sub(D) be the set of subformulas of the definienda and the definientia in D .

If B ∈ sub(D), we will say that B is a subformula of D .
Let h and h′ be hypotheses. Define h ≡D h′ iff ∀B ∈ sub(D),∀v ∈ VM ,

〈B, v〉 ∈M h⇔ 〈B, v〉 ∈M h′.

The relation ≡D is an equivalence relation.

13 One can recover extensions for defined predicates in a straightforward way. Note that
extensions are needed with some alternative definitions of similarity.

14 This point is made by (Gupta & Belnap, 1993, 121). For discussion, see (Shapiro, 2006)
and (Gupta, 2011, 160-161).
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Define ∆n
D,M by recursion as ∆0

D,M (h) = h and ∆n+1
D,M (h) = ∆D,M (∆n

D,M (h)).
Let the modal depth of A, d(A), be the greatest number of nested boxes occurring
in A. We can now state the Regularity Theorem.

Theorem 1 (Regularity Theorem) Suppose h ≡D h′. If d(A) ≤ n, then for all
m ≥ n,

M + ∆m
D,M (h), v |= A ⇔ M + ∆m

D,M (h′), v |= A.

We leave the proof to the appendix (§4) . The Regularity Theorem has the following
corollary, which highlights another sense in which revision improves hypotheses with
respect to the box.

Corollary 2.1. For all formulas A that contain no definienda, for all n, if
d(A) ≤ n then for all m ≥ n,

M + ∆m
D,M (h), v |= A ⇔ M + ∆m

D,M (h′), v |= A.

2.3 Revision sequences and semantic consequence We will now give the
formal definitions of revision sequences and validity. A note on the notation: we use
S for sequences of hypotheses and Sα to denote the αth element of S .

Definition 7 (Stably in/out, coherence, revision sequence)
Let On be the class of all ordinals.
Let λ be a limit ordinal and A ∈ F . 〈A, v〉 is stably in [stably out of] S at λ iff

for all 〈A, v〉 ∈ h
∃α < λ∀β(α ≤ β < λ⊃ 〈A, v〉 ∈ [6∈]Sβ)

A hypothesis h coheres with S at λ iff

1. if 〈A, v〉 is stably in S at λ, then 〈A, v〉 ∈ h, and

2. if 〈A, v〉 is stably out of S at λ, then 〈A, v〉 6∈ h.

S is a revision sequence for D in M iff S is an On-long sequence of hypotheses
and for all ordinals α and β,

1. if α = β + 1, then Sα = ∆D,M (Sβ), and

2. if α is a limit ordinal, then Sα coheres with S at α.

We will, following Gupta and Belnap, define two concepts of validity: S0 and S#.
For the latter, we need the following definitions.

Definition 8 (Cofinal hypothesis, recurring hypothesis) A hypothesis h is
cofinal in a revision sequence S for ∆D,M iff ∀α∃β ≥ α(Sβ = h).

A hypothesis h is recurring for ∆D,M iff h is cofinal in some revision sequence
for ∆D,M .

One can establish that all definitions have cofinal and recurring hypotheses.15

We are now in a position to define the two notions of validity.

15 See Theorem 5C.7 of (Gupta & Belnap, 1993). The proofs here proceed in the same
way.
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Definition 9 (S0 validity)
Given a set of definitions D , a sentence A is valid in M on D in S0, in symbols

M |=D
0 A, iff there is a natural number n, such that, for all hypotheses h, A is true

in M + ∆n
D,M (h). A sentence A is valid on D in S0 iff A is valid in M on D in

S0 for all ground language models M , or in symbols |=D
0 A.

Definition 10 (S# validity)
Given a set of definitions D , a sentence A is valid in M on D in S#, in symbols

M |=D
# A, iff for all recurring hypotheses h, there is a natural number n, such that

for all m ≥ n, A is true in M + ∆m
D,M (h). A sentence A is valid in S# on D iff A

is valid in M in S# for all models M of the ground language, or in symbols |=D
# A.

2.4 Proof system There is a Fitch-style proof system for basic revision theory:
the system C0.16 The system uses indexed formulas, Ai, where the index can be
any integer. The indices track the relative stage of revision for a given formula. The
rules for the logical connectives require their premises and conclusions to have the
same index, as in the following.

Ai

(A ∨B)i ∨I

(A&B)i

Bi &E

The only rules that change the indices in C0 are the index shift rule and the
definition rules. Index shift permits one to go from Ai to Ak, provided that A
contains no defined predicates. For each definition Gx=Df AG(x) in D , there is a
pair of definition rules.17

AG(t)i

G(t)i+1 DefI

G(t)i+1

AG(t)i DefE

To accommodate the new connective, 2, we add the following rules to C0 to get
the system C2

0 .

Ai

(2A)i+1 2I

(2A)i+1

Ai 2E

We will use the turnstile, `D
0 , for provability in C2

0 and `D
0 A to indicate that A0 is

provable in C2
0 . We then have the following.

Theorem 2 (Soundness and Completeness) Let A be a sentence. Then,

`D
0 A⇔ |=D

0 A.

The proof of soundness is a standard induction on the construction of a proof, so
we omit it. The proof of completeness uses the modified Henkin construction from
(Gupta & Belnap, 1993). Some care must be taken in defining the hypotheses, but
it is otherwise straightforward; we omit the proof.

16 (Gupta & Belnap, 1993, 157-160)
17 The terms t must be free for x in AG(x).
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Soundness holds for S#, but completeness, in general, fails. In basic revision
theory, the completeness result holds for a restricted class of definitions, the finite
definitions.18 Finite definitions are ones for which the revision process come to an
end, in the sense of not generating new hypotheses, after a finite number of steps.
Once the notion of finite definition is suitably generalized, the completeness result
holds for extended revision theory as well. Finite definitions will play a role in one
of the theorems proved below (§3.2). Let us now turn to the Solovay-type theorems.

§3 Solovay-type completeness theorems In this section we will prove some
Solovay-type completeness theorems linking extended revision theory and the modal
logics RT and RTQ. We will begin with some definitions to establish terminology.
We will use standard definitions of Kripke models.19 A Kripke model M is a triple
(W,R, V ), where W is a non-empty set of worlds, R ⊆ W × W , and V is an
interpretation. For the propositional case, we will use the notation, M,w  p, for
V (p, w) = t. The ‘’ relation is extended to complex sentences in the standard way.
For the first-order case, the ‘’ notation will be adapted in the obvious way. We
will use only first-order Kripke models with constant domains, which we explain
below.

The modal logic we will investigate, RT , is obtained by adding to the modal logic
K the axiom

∼2A ≡ 2∼A.20

The logic is sound and complete for models in which every world has exactly one
R-successor.

The first-order logic RTQ is obtained by adding to RT axioms for quantifiers,
the rule of generalization, and both directions of the Barcan formula.

∀x2Ax ≡ 2∀xAx

Adding both directions of the Barcan formula will restrict us to constant domain
Kripke models. The reason for the restriction is that in a revision sequence, the
domain of the ground model does not change from one stage to the next. Conse-
quently, the box of revision theory will obey both directions of the Barcan formula,
and so studying the first-order modal logic of the box is done most naturally with
the Barcan formulas.

From a certain perspective, RT models look like revision sequences. There is
something to this idea, but there is an important difference. In revision sequences,
the box and the “accessibility relation” of the revision sequence go in the same
direction. If p is true at stage k, 2p is true at stage k + 1. In the Kripke models,
the box looks down the accessibility relation. If p is true at w, then for all u such
that uRw, 2p is true at u. This difference does not undermine the noted analogy,
as we will see.

There is a connection between the modal logic RT , provability in C2
0 , and

validity for circular definitions. This connection is similar to Solovay’s arithmetical

18 See (Martinez, 2001) and (Gupta, 2006) for more on finite definitions.
19 See (Hughes & Cresswell, 1996), for example.
20 A version of the axiom using both modalities is ♦A ≡ 2A. We will officially treat ‘♦’

as defined in terms of box and negation.
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completeness theorem relating the provability logic GL and provability in PA.21

The connection between GL and PA is made via arithmetical interpretations. An
arithmetical interpretation ∗ for a propositional modal language is a function that
maps sentences of the modal language to sentences of PA, defined as follows.

• (p)∗ ∈ SentLPA

• (⊥)∗ = ⊥
• (∼A)∗ = ∼(A∗)
• (A⊃B)∗ = (A∗)⊃ (B∗)
• (2A)∗ = Pr(pA∗q)22

The conceptually most important clause is the last: the box is interpreted as a
provability predicate. Solovay’s completeness theorem makes the following impor-
tant connection between GL and PA.

Theorem 3 (Solovay’s Completeness Theorem) GL ` A ⇔ for all arith-
metical interpretations ∗, PA `A∗.

For a proof see (Boolos, 1993, 125-131). Different completeness theorems can be
proved by restricting to different sets of sentences for the interpretation of atoms.
First-order interpretations can be defined as well. Here atomic formulas are mapped
to formulas of PA with the same free variables and the interpretations commute
with the quantifiers. The analogous first-order completeness theorem does not
hold.23 In this section we will prove similar completeness theorems for the logics
RT and RTQ, using interpretations based on languages with circular definitions
rather than arithmetic sentences. We will begin by proving the theorem for the
simplest case, propositional logic (§3.1). This will permit us to clearly demonstrate
the proof technique. We will use the technique to prove another theorem for the
propositional case (§3.2) and a completeness theorem for the first-order case (§3.3).

3.1 A propositional Solovay-type theorem The first task is to define the
relevant notion of interpretation. Given a base language L , expand it to L + with
the addition of 2 and a set of definitions D . Let a D-interpretation ∗ be a function
from sentences of RT to sentences of L + satisfying the following.

• (p)∗ ∈ SentenceL +

• (⊥)∗ = ⊥
• (∼A)∗ = ∼(A∗)
• (A ◦B)∗ = (A∗) ◦ (B∗), for ◦ ∈ {&,∨,⊃}
• (2A)∗ = 2(A∗)

Note that in the final clause, the box on the left is that of RT while the box on the
right is that of extended revision theory.

We are now ready to state the Solovay-like theorem relating RT and C2
0 .

Theorem 4 Let L be a ground language with at least one name.

RT `A ⇔ ∀D ,∀D-interpretations ∗, `D
0 (A∗)

21 Solovay had other results in this area. We state only one here. For more, see (Boolos,
1993), especially chapter 5.

22 The notation, pAq, stands for the Gödel number of A. The notation is specified only
relative to a particular Gödel numbering.

23 See (Boolos, 1993, Ch. 17-18) for details.
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In §3.2, we will prove a version of the theorem for a restricted class of box-
free definitions. The proofs of the two theorems have some interesting conceptual
differences. In the proof of the theorem for all definitions, the work primarily goes
into the definition of the hypotheses. The circular definitions and the interpretations
are relatively straightforward. By contrast, in the proof of the theorem for the box-
free definitions, the work goes into specifying the set of circular definitions and the
appropriate interpretations, and the starting hypotheses do not matter.

We will briefly outline the proof strategy before providing the details. The left-
to-right direction is proved by a straightforward induction, showing that the D-
interpretations of each line of an RT proof is derivable in C2

0 .
For the right-to-left direction, we argue contrapositively. Let the box normal

form, Abnf , of A be the formula obtained by distributing all boxes past all other
connectives. In RT , A is equivalent to Abnf , as noted below in corollary 3.2..
Assume that RT 6 `A, so RT 6 `Abnf . We use the completeness of RT to obtain a
canonical model falsifying Abnf . This gives a finite set of worlds and a distribution
of truth values falsifying Abnf . This is translated to a finite number of steps of a
revision sequence, which allows us to determine the definition needed to produce
that pattern of truth values. Finally, we show that the transformations used to
obtain the box normal form are provably equivalent in C2

0 .
Figure 1 summarizes the proof strategy for the right-to-left direction. The double

RT 6 `A ; 6 `D
0 A

∗

⇓ ⇑

RT 6|= Abnf ⇒ 6|=D
0 (Abnf )∗

Fig. 1. Proof strategy for the Solovay-type completeness theorems

line arrows indicate the steps taken in the proof. The wavy arrow is the desired
conclusion. The two steps represented by the vertical arrows on the left and right
are accounted for by completeness and soundness results, respectively. The primary
contribution of this section is the step represented by the arrow along the bottom,
namely showing how to determine an appropriate D and an invalidating model.

We begin by highlighting some useful features of RT .

Lemma 1 RT has the following theorems.

1. 2∼A ≡ ∼2A
2. 2(A⊃B) ≡ (2A⊃2B)
3. 2(A ∨B) ≡ (2A ∨2B)
4. 2A ∨2∼A
5. ∼2⊥
6. ⊥ ≡ 2n⊥, for all n
7. 2n(A⊃B) ≡ (2nA⊃2nB), for all n.

The lemma suffices to establish the following.

Corollary 3.2. For every A, RT `A ≡ Abnf .

Theorem 5 (RT completeness) RT is sound and complete with respect to the
class of Kripke models in which every world has exactly one R successor.
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Proof. This is proved using the methods of (Hughes & Cresswell, 1996). � We

will make use of a theorem concerning k-restricted models, which we now define.
Let M be an RT model, w a world of M , and k a natural number. We will say
that M ′(= 〈W ′, R′, V ′〉) is the k-restriction of M at w iff W ′ is the set of all worlds
w′ ∈ W that can be reached in at most k-many R-steps from w, that is, that
w0Rw1R, . . . , Rwk, with w = w0 and R′ and V ′ are the appropriate restrictions of
R and V .

Theorem 6 Let M be an RT model, w a world of M , and k a natural number.
Let M ′(= 〈W ′, R′, V ′〉) be the k-restriction of M at w. Then, for all j ≤ k, for all
A such that d(A) ≤ (k − j), M,wj A iff M ′, wj A.24

Let us note the first-order version of this holds for the constant domain models of
RTQ.

Let us say that a formula A is a boxed atom iff for some n ≥ 0, it has the form 2np,
where p is an atom. A maximal boxed atom occurrence is an occurrence of a boxed
atom that does not occur as a subformula of another boxed atom. As an example, in
the sentence 24p&22p& p there are three maximal boxed atom occurrences, 24p,
22p, and p. We will generally restrict attention to maximal boxed atom occurrences.
Let us begin the proof.

Assume that RT 6 `A, so RT 6 `Abnf . Then by the completeness theorem, there is
a model M and a world w0 such that M,w0 6 Abnf . Let d(A) be k. Then there are
k+ 1 worlds, such that w0Rw1 . . . Rwk. For each maximal boxed atom occurrence,
2np, of A, M,w0  2np just in case M,wn  p. We associate with each atom q of
A, a k+ 1-long sequence of truth values, q, such that qi = t just in case M,wi  q,
otherwise qi = f. We can, by theorem 6, restrict our attention to just the pattern
of values of the q’s. We will use the set of q’s to define the required model and
hypothesis.

Next, we define a set of circular definitions central to our proof.

Definition 11 Let G be the set of definitions containing, for each n,m,

Gmn x=Df 2
nGmn x.

In constructing the invalidating interpretation, we will assign to each atom of
Abnf a defined predicate from G . It is helpful to note that Abnf is a truth-functional
combination of maximal boxed atom occurrences, so the invalidating interpretation
will have the same structure. Only finitely many distinct atoms can appear in Abnf ,
so a finite D ⊆ G will suffice for the rest of the proof. In fact, the subset we will
use is even simpler, since all the G’s in the set of definitions will have the same
subscript. It is straightforward to see that for any finite D ⊆ G , the extensions
assigned to D will cycle in a pattern with a finite period.25

24 See (Blackburn et al., 2002, 76) for a more general version of this theorem. Ours is
specific to RT .

25 Here and below, we will talk about the extension of a predicate according to a
hypothesis. It can be eliminated at the cost of making it more cumbersome to state
certain portions of the proof. The extension of a formula according to a hypothesis
can be defined from the basic definition of a hypothesis. The extension of an n-ary
formula 2B(x) according to h is the set of tuples d such that for some v, v(x) = d
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At this point, it may be helpful to see an example of a cycle of definitions from
G . Take Gx =Df 23Gx and some model M . The revisions of a given hypothesis
h cycle in a simple pattern, as illustrated by table 1.26 For the definition of Gmn ,

Table 1. Pattern of truth values across revisions

h ∆D,M (h) ∆2
D,M (h) ∆3

D,M (h) ∆4
D,M (h) ∆5

D,M (h) . . .

Ga t t f f t t

2Ga f t t f f t

22Ga f f t t f f

23Ga t f f t t f

the initial hypothesis will return to its values over the subformulas of the definition
every n+ 1 revisions, with the pattern of satisfaction lagging one stage behind, as
illustrated by table 2.

Table 2. Pattern of satisfaction across revisions

|= h ∆D,M (h) ∆2
D,M (h) ∆3

D,M (h) ∆4
D,M (h) ∆5

D,M (h) . . .

Ga t f f t t f

2Ga t t f f t t

22Ga f t t f f t

23Ga f f t t f f

The RT countermodel N provides a k + 1-long sequence of R-successor worlds,
starting with w0. This provides a sequence of truth values, q, for each atom q of
Abnf . The desired set of definitions is the set G1

k, . . . , G
j
k, where j is the number of

distinct atoms in A. We can use any D-interpretation such that sets (qi)
∗ = Gika,

for each atom qi of A. The interpretation of all other atoms can be arbitrary.
Next, we must construct the hypotheses to be used to falsify the interpretation

of Abnf . The model M can be arbitrary. For the hypotheses, we use the sequences
q to determine the values for the Gik at each stage of revision. Define the sequence
〈hm〉m∈ω as follows.

• 〈2nGina, v〉 ∈M h0 iff N,wn  qi, for each atom qi.
• hm+1 = ∆D,M (hm).

Next, we need to show that M 6|=D
0 (Abnf )∗. We use the sequence of hypotheses

〈hm〉m∈ω. After k revisions, M + hk 6|= (Abnf )∗. For all natural numbers n,

hk ≡D hn·(k+1)+k,

and 〈B, v〉 ∈M h. Similarly, the extension of Gx is the set of d such that for some v,

v(x) = d and 〈A(x,G), v〉 ∈M h.
26 The table uses truth values rather than pairs from hypotheses. The correspondence is

straightforward.
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so, by theorem 1, for all n,

M + hn·(k+1)+k 6|= (Abnf )∗.

Therefore, M 6|=D
0 (Abnf )∗.

Corollary 3.3.

1. 6|=D
0 (Abnf )∗

2. 6 `D
0 (Abnf )∗

To finish the proof, we need the following lemma.

Lemma 2 For all D and all D-interpretations ∗, `D
0 (A ≡ Abnf )∗.

The desired lemma is a corollary of the following.

Lemma 3 All instances of each of the following are theorems of C2
0 .

1. ((2∼A) ≡ (∼2A))∗

2. (2(A&B) ≡ (2A&2B))∗

3. ((2(A ∨B) ≡ (2A ∨2B))∗

4. ((2(A⊃B)) ≡ (2A⊃2B))∗

Proof. C2
0 has all instances of each equivalence scheme, without the interpretations,

as theorems, so it has every interpretation of each instance as a theorem. �

3.2 A box-free variant Next we will prove a variant of the propositional
Solovay-type theorem for a special set of definitions that do not use the box. We
restrict attention to the set of definitions that are finite definitions in basic revision
theory. In the basic theory, a set of definitions D is a finite definition just in case,
for all ground models, there is a natural number n such that for all hypotheses h,
δnD,M (h) has a finite period, i.e. there is a p such that δn+pD,M (h) = δnD,M (h). For finite
definitions, the revision process is over in a finite number of steps, in the sense that
after a finite number of revisions, only a distinguished subset of hypotheses recur
over successor stages. Let us denote the set of definitions that are finite in basic
revision theory FIN . Note that no definition in FIN contains the box.

We will work with extended revision theory rather than basic revision theory,
although all sets of D will be drawn from basic revision theory, so they will not use
the box. We will prove the following.

Theorem 7 Let L be a language containing a binary relation symbol, ‘<’.

RT `A ⇔ ∀D ∈ FIN ,∀D-interpretations ∗, `D
0 A
∗

The proof proceeds in much the same way as the proof in the previous section, so,
rather than step through the proof in detail, we will highlight the changes that need
to be made.

Let LINORD(n) be a sentence saying that ‘<’ is a discrete linear order with a
least element, 0, and there are at least n distinct objects in the ordering. If there are
not names for these n objects, enrich the language with them. Let RESET (m,n)
be a sentence saying that there are no more than n objects satisfying Hm

n and
no object outside the ordering satisfies Hm

n . Let H be the set of the following
definitions, for each m,n ∈ ω.

Hm
n x=Df LINORD(n) &RESET (m,n) & [(∀y(0 ≤ y < x⊃Hm

n y)]



ZU064-05-FPR Solovay-type-theorems-rsl 22 July 2017 23:12

14 shawn standefer

Table 3. Pattern of truth values across revisions

h ∆D,M (h) ∆2
D,M (h) ∆3

D,M (h) ∆4
D,M (h) ∆5

D,M (h) . . .

H30 f t t t f t

H31 f f t t f f

H32 f f f t f f

In all models in which either ‘<’ is not interpreted as a discrete linear order with a
least element or there are not at least n elements, the revision sequence for Hm

n will
settle at the empty set for the extension of Hm

n . Let us suppose that M is a model
in which LINORD(n) is satisfied. Then there are n objects. We may as well call
them 0,1,2,. . . , n− 1. As an example, the revision sequence for H3x is as follows.27

We will assume that the initial extension of H3 is empty. After one revision, the
extension of H3 resets either to the empty set or to an initial <-segment containing
no more than 3 objects. After at most 3 revisions, it resets to the empty set, and
then falls into the pattern illustrated in table 3, until it reaches 3 elements, at which
point it resets to empty after the next revision. With this observation, we can prove
the following.

Lemma 4 Each finite subset Y ⊆ H is a finite definition (in basic revision
theory).

For any Hm
n , we can construct a table of the pattern of truth values it takes over

the n elements it applies to. This has an eventual period of n+1. For 0 ≤ k < n+1,
let Col(Hm

n )k be a sentence that is true whenever the kth column of the table of
patterns of truth values matches the current stage of revision. For Hm

n , there are
n+ 1 columns and Col(Hm

n )k is defined as

±0H
m
n (0) & ±1 H

m
n (1) & . . . & ±n Hm

n (n),

where ±j is nothing if j < k and ±j is ‘∼’ otherwise. For the example above,
Col(H3)0 is

∼H3(0) &∼H3(1) &∼H3(2),

and Col(H3)2 is

H3(0) &H3(1) &∼H3(2).

Suppose h occurs in a revision sequence after a stage at which RESET (m,n) is
false. It is clear from the definition that if Col(Hm

n )k is true at M + h, then, for
j 6= k, Col(Hm

n )j will not be true at M+h. Combinations of the Col(Hm
n ) sentences

are what will interpret the boxed atoms for the countermodel. They will be used
to obtain the desired pattern of truth values.

We will assume that the modal depth of A is at least 1, otherwise we are just
dealing with classical validity. If A contains m distinct atoms and A has modal
depth n, then the definition D will be the subset of H containing the definitions
for H0

n, . . . ,H
m−1
n . To define ∗ we need some more notation. Let

[pi] = {(n+ 1)− k : k ≤ n+ 1 &M,wk  pi}.

27 We will drop the superscript and focus on the named 3 elements.
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Let

(pi)
∗ =

∨
k∈[pi]

Col(Hi
n)k,

for each atom pi in A and for all other atoms, (q)∗ = ⊥. If [pi] = ∅, then∨
k∈[p′i]

Col(Hi
n)k = ⊥.

Let the countermodel M ′ contain at least n elements. As before, we construct a
sequence of hypotheses, 〈hi〉i∈ω.

• h0 = ∅
• hi+1 = ∆D,M ′(hi)

After n+ 1 revisions, the Hm
n s will cycle back to empty extensions. If the Hm

n are
empty at stage k, then at stage k+ n, M ′ + hk+n |= A∗bnf iff M,w0 Abnf . This is
because hk+n agrees with w0 on the evaluation of all boxed atoms. For each j, there
are k and r such that hj+k ≡D h(r·(n+1))+n, and M ′ + hj+k 6|=D

0 A∗bnf . Therefore,

M ′ 6|=D
0 A∗bnf , as desired.

The use of a binary predicate, ‘<’, appears to be necessary to prove the theorem
in basic revision theory. Now we will turn to the first-order Solovay-type theorem.

3.3 A first-order Solovay-type theorem We can obtain a first-order version
of the theorem using the technique of §3.1. We must slightly alter the definition
of a D-interpretation. Instead of a propositional modal language, we start with a
first-order modal language with no names or function symbols. The atomic clause
in the definition of a D-interpretation should be as follows.

• F (x1, . . . , xn)∗ = B(x1, . . . , xn), where B is a formula in the language L +
D

such that x1, . . . , xn are all and only the free variables in B.

The other clauses of the definition of D-interpretation remain the same.
The theorem we wish to prove is the following, where our modal language contains

no names.

Theorem 8 RTQ `A iff ∀D ,∀D-interpretations ∗ |=D
0 A∗

As in the propositional case, one can ask about the analogous proposition for
definitions that do not contain the box. We will return to that case briefly after
proving theorem 8.

As in the propositional case, the soundness direction, the left-to-right direction,
is immediate. The converse direction will take some more work.

We note the following.

Theorem 9 (RTQ completeness) RTQ is sound and complete with respect to
constant domain Kripke models in which every world has exactly one successor.

Proof. This is proved using the methods of (Hughes & Cresswell, 1996). �

To prove the right-to-left direction of theorem 8, we will argue for the contrapos-
itive, so we will assume that A is a sentence such that RTQ 6 `A. It follows that
RTQ 6 `Abnf . By the completeness of RTQ, there is then a model M and a world
w0 such that M,w0 6|= Abnf . We assume that A, and so Abnf , contains only the
atomic predicates F1, . . . , Fm and, for notational simplicity, that all the Fi have the
same arity.
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The model M assigns a pattern of extensions to the predicates that falsify Abnf
at w0. Since M is an RT model, each world in M has unique R successor. Let
α = d(A) + 1 and let β = d(A). We need only look at the sequence of α worlds,
starting from w0. The extensions in those worlds is shown in table 4. The predicate

Table 4. Pattern of extensions for predicates across worlds

w0 w1 w2 . . . wβ

F1 X1
0 X1

1 X1
2 X1

β

F2 X2
0 X2

1 X2
2 X2

β

...
...

...
...

...

Fm Xm
0 Xm

1 Xm
2 Xm

β

Fj is assigned the extension Xj
n in wn, for each n ≤ α. We will use this pattern of

extensions to define the refuting hypotheses.
We will modify the set G from the propositional case to obtain the desired set

of definitions. Abusing notation slightly, let G be the set of circular definitions,
Gmn (x) =Df 2

nGmn (x), for each n and m. As before, the extensions assigned to Gmn
repeat in a sequence over (n + 1)-many stages. Each finite subset of G is itself a
finite definition.

As in the propositional case, it may be helpful to have an example of a cycle of
extensions for a definition from G . Take G3x=Df 2

3G3x and some model M . The
hypotheses cycle in the pattern found in table 5, presented in terms of extensions
rather than pairs from hypotheses.28

Table 5. Pattern of extensions assigned by hypotheses

h ∆D,M (h) ∆2
D,M (h) ∆3

D,M (h) ∆4
D,M (h) ∆5

D,M (h) . . .

Gx X0 X3 X2 X1 X0 X3

2Gx X1 X0 X3 X2 X1 X0

22Gx X2 X1 X0 X3 X2 X1

23Gx X3 X2 X1 X0 X3 X2

For the defined predicate Gmn , the initial hypothesis will return to its values
over sub(D) every n + 1 revisions. Table 6 lists the sets of elements satisfying the
formulas, Gx,2Gx,22Gx, and 23Gx, at different stages of revision.

We now define the desired set D of definitions. We let D be the set of definitions
for G1

β , . . . , and Gmβ from G , where m is the number of distinct atomic predicates in
Abnf . The desired D-interpretation ∗ is the one that assigns to each Fi the predicate
Giβ , with the appropriate variables. For the model, we take the domain of D and
assign all predicates not occurring in (Abnf )∗ an empty extension. Call this model
M ′. Define a sequence of hypotheses 〈hn〉n∈ω as follows.

28 We drop the subscript on the predicate and corresponding superscript on the extension.
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Table 6. Pattern of sets satisfied by given hypotheses

|= h ∆D,M (h) ∆2
D,M (h) ∆3

D,M (h) ∆4
D,M (h) ∆5

D,M (h) . . .

Gx X3 X2 X1 X0 X3 X2

2Gx X0 X3 X2 X1 X0 X3

22Gx X1 X0 X3 X2 X1 X0

23Gx X2 X1 X0 X3 X2 X1

• 〈2kGjβx, v〉 ∈ h0 iff v(x) ∈ Xj
k, where Xj

k is the extension of Fj in wk.
• hn+1 = ∆D,M ′(hn).

The desired hypotheses to falsify (Abnf )∗ are all hypotheses that agree with M in

the following sense. For each j, k such that 1 ≤ j ≤ m and k ≤ β, Xj
k is the set of

tuples satisfying 2kGjβx in M ′+ h just in case M assigns Xj
k to Fj in wk. Suppose

hn is such a hypothesis. For all p, hn ≡D hp·α+n.
It remains to see that 6|=D

0 (Abnf )∗. For this to be true, we need a model N and for
each n, a hypothesis h such that N + ∆n

D,N (h) 6|= (Abnf )∗. For the model we take
M ′. For each n, we want to pick a hypothesis that will yield one of the falsifying
hypotheses after n revisions.

Now we can finally show that M ′ + ∆n
D,M ′(h) 6|= (Abnf )∗. The falsifying hypoth-

esis ∆n
D,M ′(h) agrees with the model M in the following sense: for each k ≤ β,

M ′ + ∆n
D,M ′(h), v |= 2kGjβ(x) ⇔ M,v,wk  Fj(x).

The latter holds just in case M,v,w0 2kFj(x). Since M,w0 6|= Abnf , we have

M ′ + ∆n
D,M ′(h) 6|= (Abnf )∗.

To close, let us turn to the box-free variant for the first-order case. It is an open
question whether that holds in general or for the restricted class of finite definitions.
We do not see how to adapt our proof of the first-order theorem to a definition that
lacks boxes. In the propositional case, the box-free definition that we gave cycled
through truth values, in other words, extensions with respect to a single element.
We do not see how to replicate these cycles with the potentially arbitrary extensions
needed to invalidate the relevant sentences.

§4 Appendix: Regularity Theorem In this appendix we will prove a few
facts about the concepts introduced in §2. We begin by showing that revision
preserves similarity. First, we note that correspondence and similarity both preserve
satisfaction. We will omit the proofs, as both are by simple inductions.

Lemma 5 If 〈A, v〉 corresponds in M to 〈B, u〉, then

M + h, v |= A ⇔ M + h, u |= B.

Lemma 6 If 〈A, v〉 and 〈B, u〉 are similar, then

M + h, v |= A ⇔ M + h, u |= B.

These lemmas are sufficient to obtain the desired corollary.
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Corollary 4.4. For all hypotheses h, ∆D,M (h) is a hypothesis.

Lemma 6 has the following corollary, which, although obvious, is heuristically
suggestive.

Corollary 4.5. Suppose h is a hypothesis. Let

h′ = {〈A, v〉 ∈ F × V : M + h, v |= A}.

Then h′ is a hypothesis, and h′ = ∆D,M (h).

The next lemma extends revision to all formulas of the language, not just those in
F .

Lemma 7 For all formulas A and assignments v,

〈A, v〉 ∈M ∆D,M (h) ⇔ M + h, v |= A.

Proof. Assume 〈A, v〉 ∈M ∆D,M (h). So, there is a pair 〈B, u〉 ∈ ∆D,M (h) to which
〈A, v〉 corresponds. By the definition of revision, 〈B, u〉 ∈ ∆D,M (h) iff M + h, u |=
B. By lemma 5, this is true iff M + h, v |= A.

Assume M + h, v |= A. Suppose 〈A, v〉 corresponds to 〈B, u〉. By lemma 5,
M + h, u |= B, so 〈B, u〉 ∈ ∆D,M (h). Therefore 〈A, v〉 ∈M ∆D,M (h).

�

Now we will sketch the proof of the Regularity Theorem. We begin by noting
some useful lemmas.

Lemma 8 If h ≡D h′, then for all A ∈ sub(D), then

M + h, v |= A ⇔ M + h′, v |= A.

Proof. The proof is by induction on the complexity of A.
�

Lemma 9 If h ≡D h′ and A ∈ sub(D), then

〈A, v〉 ∈M ∆D,M (h) ⇔ 〈A, v〉 ∈M ∆D,M (h′).

Proof. The proof is by induction on the complexity of A. We will present only the
box case.

Case: A is 2B

〈2B, v〉 ∈M ∆D,M (h)⇔ M + h, v |= 2B
⇔ 〈B, v〉 ∈M h
⇔ 〈B, v〉 ∈M h′, by IH
⇔ M + h′, v |= 2B
⇔ 〈2B, v〉 ∈M ∆D,M (h′)

�

The preceding lemmas are sufficient for the following corollary.

Corollary 4.6. If h ≡D h′, then ∆D,M (h) ≡D ∆D,M (h′).

For the proof of the Regularity Theorem, we need the following auxiliary concept,
another kind of equivalence between hypotheses. This equivalence is, however,
significantly different from ≡D .
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Definition 12 (≡n) Let h and h′ be hypotheses. h ≡n h′ iff and for all v ∈ VM
and for all B such that d(B) ≤ n,

M + h, v |= B ⇔ M + h′, v |= B.

We note two obvious facts about the ≡n relations.

Lemma 10 The ≡n relations are equivalence relations.
For k ≤ n, if h ≡n h′, then h ≡k h′.

The two relations, ≡n and ≡D , combine to give an informative and useful relation
on hypotheses, as indicated by the following lemma.

Lemma 11 For n ≥ 0, if h ≡D h′ and h ≡n h′, then ∆D,M (h) ≡n+1 ∆D,M (h′).

Proof. Assume h ≡n h′ and h ≡D h′. We want to show that for all formulas A such
that d(A) ≤ n+ 1, for all assignments v,

M + ∆D,M (h), v |= A ⇔ M + ∆D,M (h′), v |= A.

We proceed by induction on the complexity of formulas A. We here present only
the box case.

Case: 2B. Since d(2B) ≤ n+ 1, d(B) ≤ n.

M + ∆D,M (h), v |= 2B ⇔ 〈B, v〉 ∈M ∆D,M (h) ⇔ M + h, v |= B.

By the assumption that h ≡n h′, this is equivalent to M + h′, v |= B, which by the
definition of revision is equivalent to 〈B, v〉 ∈M ∆D,M (h′). This holds just in case
M + ∆D,M (h′), v |= 2B, as desired. �

This is sufficient to establish the following.

Lemma 12 For all n, if h ≡D h′ and h ≡0 h
′, then ∆n

D,M (h) ≡n ∆n
D,M (h′).

Proof. The proof is by induction on n. The base case and induction step, respec-
tively, are taken care of by the two preceding lemmas. �

Lemma 13 If h ≡D h′, then h ≡0 h
′.

Proof. Assume h ≡D h′. We will show that for all A such that d(A) = 0,
M + h, v |= A iff M + h′, v |= A. The proof is by induction on the complexity
of A. The cases are all trivial except for when A is a defined predicate, in which
case the case is taken care of by the assumption that h ≡D h′.

�

The last two lemmas suffice to establish the Regularity Theorem, which we restate
here.

Theorem 10 (Regularity Theorem) Suppose h ≡D h′. If d(A) ≤ n, then for
all m ≥ n,

M + ∆m
D,M (h), v |= A ⇔ M + ∆m

D,M (h′), v |= A.

§5 Appendix: Finite definitions In §2, we said that in basic revision theory,
S0 and S# coincide for finite definitions. We can maintain this equivalence in
extended revision theory by generalizing the notion of finite definition.
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In the context of the extended theory, the original sense of finite definition will
not work, because we have broadened hypotheses to cover all formulas, not just
defined predicates. To see the problem, consider the following sequence.

>,2>,22>, . . . ,2n>, . . .

Take a hypothesis that makes 2n> false for each n ≥ 1. After m revisions, 2m>
will be true, and so be added to the next revision of the hypothesis. Since for every
n, ∆n+1

D,M (h) disagrees with h on at least one formula, 2n>, there is no n for which
∆n

D,M (h) = h.
For any definition, even finite definitions in the original sense, some hypotheses

may have strange evaluations of boxed formulas; these evaluations will be filtered
out after revision, but no finite upper bound can be put on the number of revisions
required. The problem can, however, be fixed by restricting attention to formulas
in sub(D). More precisely, in the extended theory, we will adopt the following
definition of finiteness.

Definition 13 (n-reflexive, reflexive, finite)
A hypothesis h is n-reflexive for D iff ∀B ∈ sub(D) ∀v ∈ VM

〈B, v〉 ∈M h ⇔ 〈B, v〉 ∈M ∆n
D,M (h).

A hypothesis h is reflexive for D iff there is some n > 0 for which h is n-reflexive.
A definition D is finite iff ∀M∃n∀h ∆n

D,M (h) is reflexive.

The problematic sequence displayed above will not interfere with certain definitions
being finite, because that sequence will not be in sub(D).

If the finite definition D is simple, in the sense that it contains definitions for
only finitely many predicates, then, we can maintain the equivalence between S0

and S# for D .29

Theorem 11 If D is a simple, finite definition, then

|=D
0 A⇔ |=D

# A.

We omit the proof here, since it would be a lengthy addition. For the interested
reader, we will note that the proof is an adaptation of the proof from (Gupta, 2006)
for the analogous claim in basic revision theory. Our requirement that definitions be
simple stems from the requirement that finiteness take into account all formulas in
sub(D). We found it easier to work with definitions put into box normal form, but
we were unable to prove the equivalence between definitions in box normal form and
those not in normal form when the definitions contain infinitely many predicates.
To state the problem more precisely, for a finite definition D , let Dbnf be the result
of putting all the definientia in D into box normal form. If D is simple, then the
set of sentences valid on D coincides with the set of sentences valid on Dbnf . It is
an open question whether the same holds when D is not simple.
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