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Abstract
In this article, we present a definition of hyperintensionality appropriate to relevant 
logics. We then show that relevant logics are hyperintensional in this sense, drawing 
consequences for other non-classical logics, including HYPE and some substruc-
tural logics. We further prove some positive and negative results concerning exten-
sionality and hyperintensionality in relevant logics. We close by discussing related 
concepts for classifying formula contexts and potential applications of these results 
in the area of epistemic logic.

Keywords  Relevant logics · Hyperintensionality · HYPE · Extensionality

1  Introduction

Hyperintensionality, being able to distinguish necessarily equivalent formulas, has 
become an important topic in philosophical logic.1 The growing importance of hyper-
intensionality for philosophical concepts has been highlighted by Nolan (2014), call-
ing it the “hyperintensional revolution.” One can, of course, extend classical logic 
with hyperintensional operators, but one might wonder whether other logics could 
offer something distinctive with respect to hyperintensionality.2

1 See Berto and Nolan (2021).
2 Some of the standard examples of hyperintensional operators added to classical logic, often though not 
always modeled using impossible worlds, include belief operators, knowledge operators, and conditional 
operators. See Wansing (1990), Alechina and Logan (2010), and Berto et al., 2018, among others, for 
recent examples, and see Berto and Jago (2019, ch. 7) for an overview of the work on epistemic logics. 
For a general approach to hyperintensional operators, see Sedlár (2019).
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Relevant logics provide examples of logics where there are surprises with respect 
to hyperintensionality. Relevant logics are a family of non-classical logics that can 
be used to draw fine-grained distinctions, including distinguishing logical truths. As 
we will see, many modal extensions of relevant logics exhibit hyperintensionality, 
and this includes extensions with standard axioms and rules. As an example, adding a 
standard assortment of S5 axioms and rules to a relevant logic will result in a modal 
logic with hyperintensional contexts, whereas adding those to classical logic does not 
yield a logic with such contexts.3

While our focus is on extensions of the logics with modal operators, there is a 
tradition in relevant logics of using the resources of the base logic to define a kind of 
necessity operator. The most prominent example of this is the logic E of entailment, 
defended by Anderson and Belnap (1975). One can ask whether the defined necessity 
operators exhibit any sort of hyperintensionality. We will argue that they do, provid-
ing a sense in which hyperintensionality is built into the base relevant logics. In so 
doing, we will draw out some consequences for other non-classical and substructural 
logics.

There is one additional place where discussion of hyperintensionality in non-clas-
sical contexts has arisen. Recently, Leitgeb (2019) defended the non-classical logic 
HYPE as exhibiting a distinctive combination of simplicity and strength. Among 
its claimed features is providing a kind of hyperintensionality, a claim disputed by 
Odintsov and Wansing  (2021), who demonstrate that there is a sense of hyperin-
tensionality, related to congruentiality below, that the logic does not enjoy. We will 
offer some support to Leitgeb’s claim, proceeding via a discussion of relevant logics, 
showing that there is a sense in which HYPE is hyperintensional.

In the next section, we will supply some brief background on relevant logics, in 
particular the logic R. Then, in §3 we will precisely define some concepts to classify 
formula contexts, notably extensionality and hyperintensionality. In §4, we will pres-
ent our main results concerning hyperintensional contexts in relevant logics. Then, 
in §5, we will make some observations concerning the concept of extensionality, 
drawing out a consequence for HYPE, and we will obtain some limitative results. 
Finally, in §6, we will look at two further definitions for classifying formula contexts 
and discuss some features of relevant logics reminiscent of hyperintensionality but 
distinct from it. We will close by discussing some potential upshots of our results for 
epistemic logics.4

3 For concreteness, we mean (K) �(A → B) → (�A → �B), (4) �A → ��A, (B) A → �¬�¬A,
(∧�) (�A ∧ �B) → �(A ∧ B), (Nec) A ⇒ �A, although as we will see, many alternative sets of 
principles from S5 will work equally well for the present point. While (∧�) is not typically taken as 
an axiom in S5, it is a theorem of the logic. It is included here since it is a standard axiom for modal 
relevant logics and to reassure the reader there is no funny business going on with the selection of modal 
principles.

4 We note that this is an extended version of (Standefer, 2023a).
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2  Relevant logics

Relevant logics are a family of non-classical logics with a distinctive conditional, or 
implication, connective.5 One of the important ways in which the relevant conditional 
is distinctive can be found in Belnap’s variable-sharing criterion: If A → B is valid, 
then A and B share a propositional variable. The variable-sharing criterion is typically 
taken as a necessary condition on being a relevant logic.6 We will focus on the stan-
dard logical vocabulary of {→, ∧, ∨, ¬}, considering the addition of a modal operator 
�, below. The biconditional, A ↔ B, will be defined as (A → B) ∧ (B → A). To 
contrast the relevant conditional and biconditional with the classical material ones, 
we will use ⊃ and ≡ for the latter connectives, defining A ⊃ B as ¬A ∨ B and 
A ≡ B as (A ⊃ B) ∧ (B ⊃ A). In the context of relevant logics, and generally any 
non-classical logic, A ⊃ B and A ≡ B will be defined as in classical logic.

While there are many relevant logics, our focus will mostly be on the logic R, 
although we will look at a few others as well. R is a relatively strong logic.7 We will 
present the axioms and rules for R, where ⇒ is used to demarcate premises from 
conclusion in the rules.

(1)	 A → A
(2)	 (A ∧ B) → A, (A ∧ B) → A
(3)	 ((A → B) ∧ (A → C)) → (A → (B ∧ C))
(4)	 A → (A ∨ B), B → (A ∨ B)
(5)	 ((A → C) ∧ (B → C)) → ((A ∨ B) → C)
(6)	 (A ∧ (B ∨ C)) → ((A ∧ B) ∨ (A ∧ C))
(7)	 ¬¬A → A
(8)	 (A → ¬B) → (B → ¬A)
(9)	 (A → B) → ((B → C) → (A → C))
(10)  A → ((A → B) → B)
(11)  (A → (A → B)) → (A → B)
(12)  A, A → B ⇒ B
(13)  A, B ⇒ A ∧ B

The logic R is the least set of formulas containing all the axioms and closed under 
the rules. Other relevant logics can be obtained by variation of axioms (8) − (11), 
dropping those axioms or possibly adding others, and by addition of other rules. The 
focus will be on R, although we will briefly consider some weaker relevant log-
ics towards the end of §4 and afterwards. The logic E can be obtained from R by 
changing axiom (10) to its rule form, A ⇒ (A → B) → B and adding a reductio 
axiom, (A → ¬A) → ¬A. The logic T can be obtained from E by dropping the rule 
A ⇒ (A → B) → B. The logic {RW can be obtained from R by dropping (11). The 

5 See Dunn and Restall (2002), Bimbó (2007), Mares (2022), or Logan (2024) for overviews of the area. 
See Anderson and Belnap (1975) and Routley et al. (1982) for broader discussions.

6 See Standefer (2025a) for discussion of the variable-sharing criterion as sufficient for being a relevant 
logic.

7 See Mares (2004) for defense of R.
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logic B, the weakest standardly considered relevant logic, can be obtained from R by 
dropping axioms (8) − (11) and adding the following rules.

	– A → ¬B ⇒ B → ¬A
	– A → B ⇒ (C → A) → (C → B)
	– A → B ⇒ (B → C) → (A → C)

There are other relevant logics one can consider, but we need not survey them here.8
Finally, we will consider logics as sets of logical truths.9 Where A is a logical truth, 

or theorem, of L, we will write, ⊢L A. Let us now turn to some concepts for classify-
ing formula contexts.

3  Classifying contexts

Let us begin with some definitions. Following Williamson (2006), define a formula 
context as a pair (C, p), of a formula and an atom. Given a context (C, p), the formula 
C(A) is what results by replacing every occurrence of p in C with the formula A. We 
can then define an initial concept, extensionality for classical logic, CL, as follows.

Definition 1  (Extensionality). A formula context (C, p) is extensional iff for all for-
mulas A and B,

	● ⊢CL (A ≡ B) ⊃ (C(A) ≡ C(B)).

This is a fine definition of extensionality for classical logic and its extensions. It is 
not, however, appropriate for all non-classical logics. The reason is that in many 
non-classical logics, including relevant logics, the interest is focused on the primi-
tive conditional connective, and the associated biconditional, rather than the material 
conditional of the logic, and the associated material biconditional.10 Therefore, we 
will replace the definition of extensional context with one that uses the appropriate 
conditional and biconditional of the logic.

Definition 2  (Extensionality in L). A formula context (C, p) is extensional in the logic 
L iff for all formulas A and B,

	● ⊢L (A ↔ B) → (C(A) ↔ C(B)).

8 See Brady (1984) or Standefer (2025b), among others, for some axiomatizations of common relevant 
logics.

9 This is the framework FMLA of Humberstone (2011).
10 In the context of relevant logics, many of the contraction-free logics lack any theorems not containing 
‘→’, for which see Slaney (1984); so (⊃, ≡)-extensionality will be a less useful concept there. Yet, it still 
seems sensible to say that those logics have some extensional contexts made up only of the vocabulary 
{∧, ∨, ¬}. Thanks to an anonymous referee for raising this point.
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This is a natural adaptation of Williamson’s definition to non-classical logics. For a 
more general study of extensionality and related concepts, we would need to make 
the relativity to the chosen conditional and biconditional explicit, so that the two 
options above would be (⊃, ≡)-extensionality and (→, ↔)-extensionality, respec-
tively. There are alternative definitions of extensionality using different combinations 
of →, ⊃, ↔, and ≡, or even other conditionals and biconditionals, but we won’t 
explore those further here.11

Extensional contexts are those that do not draw a distinction between equivalent 
formulas. Our interest here is not on extensional contexts per se, although we will 
return to them later in the paper. Our interest is, rather, in a related definition, that 
involves necessity, namely that of hyperintensional contexts.

To explain hyperintensional contexts, we will enrich the language with a necessity 
operator, �, to which we will return below. With necessity in the language, we can 
define hyperintensional contexts, although it will be worthwhile to define a related 
concept, intensional contexts. An intensional context is one where the necessary 
equivalence of formulas suffices for necessary equivalence in that context, but the 
mere equivalence of formulas does not. Following Williamson (2006), we first define 
an auxiliary concept and then define intensional contexts.

Definition 3  Non-hyperintensionality in L, intensionality in L. A formula context 
(C, p) is non-hyperintensional in L iff for all formulas A and B,

	● ⊢L �(A ↔ B) → �(C(A) ↔ C(B)).

A formula context (C, p) is intensional in L iff it is non-hyperintensional in L. and not 
extensional in L.

In the last 50 years, interest in intensional pheonomena, and relatedly in inten-
sional contexts, has grown in philosophy and philosophical logic, a trend noted 
by Nolan  (2014), among others. A paradigm example of an intensional context 
would be (�p, p) in the logic S5. This is not an extensional context, meaning that 
S5(p ↔ q) → (�p ↔ �q), but it is also not hyperintensional, meaning that for all 
A and B, ⊢S5 �(A ↔ B) → �(�A ↔ �B). It is worth noting that the use of a non-
truth-functional connective does not suffice for contexts failing to be extensional, as 
shown by Humberstone (1986). While there is surely more to say about intensional 
contexts in non-classical logics, further investigation will be left for future work. 
Instead, let us finally turn to hyperintensional contexts, which will be the focus of 
most of this paper.

A hyperintensional context is one that “draws a distinction between necessar-
ily equivalent” formulas.12 In other words, a hyperintensional context is one where 
necessarily equivalent formulas may not necessarily be equivalent in that context.13 

11 See Humberstone (1986, 1997) and (Humberstone, 2011, 455) for more on extensionality of connec-
tives.
12 Berto and Nolan (2021).
13 This is essentially the characterization given by Nolan (2014).
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We will define hyperintensionality precisely, modeling our definition on that of 
Williamson (2006).

 Definition 4  (Hyperintensionality in L). A formula context (C, p) is hyperintensional 
in L iff there are formulas A and B such that

	● L�(A ↔ B) → �(C(A) ↔ C(B)).

A logic L is hyperintensional iff there is a formula context (C, p) that is hyperinten-
sional in L.

We will refer to the conditional, �(A ↔ B) → �(C (A) ↔ C (B)), as the hyper-
intensionality scheme.

Before proceeding, we will make three comments on this definition. First, a con-
text is hyperintensional in L iff it is not non-hyperintensional in L. Given that the 
focus of this paper is on hyperintensionality, it seems worthwhile to define the con-
cept directly, rather than merely going via another definition. Second, although we 
are focused, in this paper, on some logics defined via axiom systems, the definition of 
hyperintensionality is given in a presentation-neutral way that applies equally well to 
logics defined in terms of proof systems, in terms of classes of frames, or via another 
method. Third, the definition is a straightforward generalization of a concept from 
classically-based modal logic, i.e. modal logics extending classical logic. As with 
other concepts moved from a classical setting to a non-classical one, there may be 
alternative, non-equivalent definitions that exhibit different features. This definition, 
however, seems appropriate since it uses the primary conditional and biconditional of 
the logic L. At least for the logics under discussion in this paper, the defined bicondi-
tional is the standard one, so it seems unlikely that an alternative definition of hyper-
intenisonality will offer an improvement.

Next, we will say that a logic M is a sublogic of a logic L iff M ⊆ L. A consequence 
of the definitions so far is the following proposition.

Proposition 1  Let M be a sublogic of L. If L is hyperintensional, then so is M.

Proof  Suppose that L�(A ↔ B) → �(C(A) ↔ C(B)), for some A, B, and C. 
Since M ⊆ L, M�(A ↔ B) → �(C(A) ↔ C(B)), as desired.� □

A context being hyperintensional is a failure of logical truth, or provability as appro-
priate, so hyperintensionality is preserved downwards to sublogics. This will be 
important for our main result. As we will be interested in demonstrating certain con-
texts, and logics, are hyperintensional, adopting the strongest logic will lead to the 
strongest result.
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4  Hyperintensionality

In this section, we will prove some results concerning hyperintensionality for some 
modal extensions of the logic R. The definition of hyperintensional contexts should 
be understood as indexed to R, and its modal extensions, with the displayed condi-
tional and biconditional being those of R. We will explicitly indicate when different 
logics are under consideration.

Once we have settled the question of the base logic, there is a further question con-
cerning which necessity to use in the statement of hyperintensionality. For a general 
study of hyperintensionality, care needs to be taken regarding what modal axioms, if 
any, should be required to ensure that the hyperintensionality definition yields satis-
factory results. Williamson uses universal necessity, which in the setting of classical 
logic is equivalent to the necessity of S5, in stating his definition.14 The necessity of 
S5, or rather an S5-type extension of R, would be a fine necessity for our purposes, 
but we can obtain stronger results with a different necessity. A logic being hyperinten-
sional is a matter of the invalidity of an instance of the hyperintensionality scheme, 
and, since invalidity is preserved from stronger logics down to weaker logics, using 
stronger modal principles will give stronger results concerning hyperintensionality.

Our aim will be to show that many plausible modal extensions of R are hyperin-
tensional. To that end, we will consider the modal axiom scheme A ↔ �A, which 
is known as the TRIV axiom scheme. Let the logic R.TRIV be R with the addition 
of the TRIV axiom scheme. While R.TRIV is not a plausible modal logic for alethic 
necessity, it will work for our purposes.

To obtain our main result, we first prove a lemma using matrix methods. A matrix 
has a set V of semantic values, with a subset of designated values D ⊆ V , and opera-
tions on V for interpreting each connective of the language. A valuation v is a function 
from atoms to V that is extending to the whole language using the operations of the 
matrix. A valuation v on a matrix is a counterexample to a formula A iff v(A) ̸∈ D.

Lemma 1  The formula (p ↔ q) → ((p ∧ r) ↔ (q ∧ r)) is not a theorem of R.

Proof  We will use a three-valued matrix. For the set of values, V, we take {0, 1
2 , 1}, 

with D = { 1
2 , 1}. The value of complex formulas is computed using the following 

tables. A valuation v is a countermodel for a formula A iff v(A) = 0, which is to say 
that v(A) is not designated.

14 The concept of S5-type necessity exhibits some subtleties in the context of relevant logics, for which see 
Standefer (2023b), and other non-classical logics, for an example of which see Ono (1977). In the present 
context, the addition of universal necessity to R would not result in a relevant logic, so we will not follow 
Williamson exactly.
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→ 0 1
2 1 ¬

0 1 1 1 1
1
2 0 1

2 1 1
2

1 0 0 1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

Every axiom of R is designated on every valuation and the rules preserve designa-
tion.15 By an inductive argument, this implies that every theorem of R receives a 
designated value. To show that a formula is not a theorem of R, it suffices to provide 
a valuation that assigns it 0. In the case of interest, v(p) = 1, v(q) = 1, and v(r) = 1

2  
will work.16 This valuation gives v(p ↔ q) = 1, while v((p ∧ r) ↔ (q ∧ r)) = 1

2 . 
As 1 → 1

2 = 0, 

	 v((p ↔ q) → ((p ∧ r) ↔ (q ∧ r))) = 0,

as desired.� □
The formula scheme (A ↔ B) → ((A ∧ C) ↔ (B ∧ C)) is not a theorem of R.17 

Next, we note a fact about R.TRIV.

Lemma 2  Let (C, p) be a formula context. Then, ⊢R.TRIV C (A) ↔ C (�A).

Proof  The proof is by induction on the construction of C.� □

With these lemmas in hand, we can turn to our main result.

Theorem 1  The logic R.TRIV  is hyperintensional.

Proof  To show that R.TRIV is hyperintensional, we need a formula context which is 
hyperintensional. Take the formula context (s ∧ r, s). The formula 

	 �(p ↔ q) → �((p ∧ r) ↔ (q ∧ r))

is not provable in R.TRIV. This is because we can use the previous lemma to focus 
on the equivalent 

	 (p ↔ q) → ((p ∧ r) ↔ (q ∧ r)),

which was shown not to be a theorem of R in lemma 1.� □

15 This was shown by Robert Meyer. See Anderson and Belnap (1975, 470).
16 This countermodel was found using John Slaney’s program MaGIC. See ​h​t​t​p​s​:​​​/​​/​u​s​e​r​​s​.​c​e​c​​s​.​a​​​n​u​.​e​​​d​u​​.​a​u​​/​
%​7​​j​k​​s​/​m​​​a​g​i​c​.​h​t​m​l
17 Axioms of a similar form were studied by Routley (1982, 345) and by Urbas and Sylvan (1989), and 
these will be discussed more in the next section. Thanks to Andrew Tedder for drawing my attention to 
these citations.
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Thus, we have demonstrated that R.TRIV is hyperintensional. It is worth noting 
that, for similar reasons, (p ∨ r, p) is a hyperintensional context as well. As an imme-
diate corollary, we have the following result.

Corollary 1  Let L be any sublogic of R.TRIV . Then L is also hyperintensional.

The sublogics of R.TRIV  include all the well-known relevant logics, such as 
T, E, and B, as well as (multiplicative, additive) linear logic, and further it includes 
many of their extensions with well-known modal principles. We can sharpen this 
claim, but first we need a lemma.

Lemma 3  Let L be a sublogic of R, and let M be an extension of L with modal rules 
and axioms. Suppose every theorem A of M has the feature that removing all occur-
rences of � results in a theorem of R. Then, M is a sublogic of R.TRIV.

Proof  Suppose L is a sublogic of R, and let M be an extension of L with modal 
rules and axioms. Suppose every theorem A of M has the feature that removing all 
occurrences of � results in a theorem of R. Let B be a theorem of M, and let C be 
the result of removing all occurrences of �. By assumption, C is a theorem of R. By 
repeated application of lemma 2, we can insert occurrences of �, obtaining a theorem 
of R.TRIV.� □

As a consequence of the lemma and the preceding corollary, all logics satisfying 
the hypotheses will be hyperintensional. As an illustration of what these results cover, 
we note that all the relevant modal logics discussed by Fuhrmann (1990) fall within 
their scope, as do almost all relevant modal logics considered by Ferenz and Tedder 
(2022).18

There are modal logics that are not sublogics of TRIV, although the majority of the 
philosophically significant ones are sublogics of TRIV. Perhaps the most prominent 
modal logics that are not sublogics of TRIV are provability logics, logics that include 
the axiom �(�A → A) → �A.19 These have not been studied much in the context 
of relevant logics, although RGL, a provability logic extension of R introduced by 
Mares  (2000), provides an exception. Although the above countermodel does not 
work for Mares’s provability logic, the same invalid formula demonstrates that the 
logic is hyperintensional.

Let us consider one further logic that is not a sublogic of R.TRIV. For this, we 
recall the three-valued matrix used in the proof of lemma 1. We add to that matrix an 
interpretation of �.

	
�x =

{
1 x = 1
0 else

18 The sole exception from Ferenz & Tedder (2022) is the logic RGL, to be mentioned below.
19 See Boolos (1993) and Verbrugge (2017) for more on provability logics.
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Let us say that the modal logic RM3U is the set of formulas that have no counterex-
amples on any valuation on this matrix, writing ⊢RM3U A where A is a logical truth 
of RM3U.20

The modal logic RM3U is not a relevant logic, as ⊢RM3U (p ∧ ¬p) → (q ∨ ¬q), 
which is a violation of the variable-sharing criterion.21 It also lacks an axiom of TRIV, 
as RM3Up → �p. The logic RM3U is not a great candidate for a logic of alethic 
necessity, but it contains some logics that are independently interesting. One such 
logic is the logic of universal necessity over R, presented by Standefer (2023b).22 A 
full definition of this logic would require introducing ternary relational models and 
describing their relationship to matrices.23 Rather than present those details, we will 
focus on RM3U and demonstrate its hyperintensionality.

Theorem 2  The logic RM3U  has hyperintensional contexts.

Proof  We will show that the context (p ∧ r, p) is hyperintensional in RM3U. Con-
sider the valuation v such that v(p) = v(q) = 1 and v(r) = 1

2 . It follows that 
v(�(p ↔ q)) = 1 while v((p ∧ r) ↔ (q ∧ r)) = 1

2 . Since � 1
2 = 0 it follows that 

	 v(�(p ↔ q) → �((p ∧ r) ↔ (q ∧ r))) = 0.

It then follows that (p ∧ r, p) is hyperintensional in RM3U.
RM3U is hyperintensional, and it follows that all sublogics of RM3U are hyperin-

tensional as well.24 The logic RM3U falls outside the scope of theorem 1, so we can 
see that hyperintensionality arises for modal logics that do not satisfy the variable-
sharing criterion, which we will also see in the next section with HYPE. For other 
modal logics that are not sublogics of R.TRIV, there is a lingering question of whether 
they are hyperintensional or not. In sect §6, we will show that many of those modal 
logics are hyperintensional, provided that they satisfy the variable-sharing criterion.

With theorem 1, we can specify a sense in which the base relevant logics are 
hyperintensional. This requires some additional background, and for the remainder 
of the section, we will remove � from the language. Anderson and Belnap showed 
how to define logical necessity in their logic E, a close relative of R. Anderson and 
Belnap define ■A as (A → A) → A.25 This can be understood as saying that logic 

20 The name is based on two things. First, RM3 is a standard name for the logic obtained from this matrix, 
which is a three-valued extension of the logic RM, discussed in Entailment volume 1 (Anderson & Belnap, 
1975, §29), as well as elsewhere. Second, the U is because of the extension with the modal operator related 
to universal necessity discussed below.
21 See the discussion of Anderson and Belnap (1975, 393ff). or Øgaard (2023).
22 See Standefer (2022) for additional discussion.
23 See Restall  (2000, ch. 11) for a good introduction to ternary relational models. For the connections 
between ternary relational models, or rather frames, and matrices, the interested reader should consult 
Relevant Logics and their Rivals vol. II (Brady, 2003, ch. 9) or Standefer (2025b, ch. 5).
24 Standefer (2023a, 246) claimed that the logic of universal necessity did not have hyperintensional con-
texts. Theorem 2 demonstrates that this was incorrect.
25 One can obtain an alternative definition by using the Ackermann truth constant, t, which can be given an 
informal gloss as the conjunction of all logical truths. Using the Ackermann constant, ■A can be defined 
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implies A, which is a fair definition of logical necessity. In the context of E, ■, so 
defined, has an S4-type logic, and in the context of weaker relevant logics, it obeys 
weaker principles. In the context of R, however, the defined connective ■ is trivial in 
the sense that A ↔ ■A is a logical truth. Therefore, the context (p ∧ r, p) is hyper-
intensional, taking ■ to be the necessity of the hyperintsionality scheme, which is to 
say that R■(p ↔ q) → ■((p ∧ r) ↔ (q ∧ r)).

The defined necessity, ■, in the logic R obeys the TRIV principles. For weaker 
base logics, the defined necessity is weaker. For example, the defined necessity in 
the logic E does not obey the TRIV principles, but it does obey ■A → ■■A and 
■A → A, among others. Using the defined necessity, we can view relevant logics 
as themselves (relevant) modal logics and use the defined necessity in the definition 
of hyperintensionality.26 In this sense, R and its sublogics are hyperintensional. In 
particular, Anderson and Belnap’s logic E, with its defined logical necessity operator, 
is hyperintensional. Since E with its defined necessity is simply E, it is natural to say 
that E is hyperintensional on its own. The sublogics of R build in hyperintensionality 
with respect to their defined necessity operators. Of course, there are other necessity 
operators one might define using the resources of the base logic. For many of these, 
the sublogics of R will be hyperintensional in much the same way.

With the main results on hyperintensionality proven, we will turn to a short discus-
sion of extensionality, in light of the results above.

5  Extensionality and some limitative results

We will begin by observing one additional corollary of lemma 1.

Corollary 2  There are contexts that fail to be extensional in R.

Proof  By lemma 1, (s ∧ r, s) fails to be extensional in R.� □

For similar reasons, (s ∨ r, s) also fails to be extensional in R. While it is perhaps 
not surprising that R, and all of its sublogics, contain non-extensional contexts, it is 
worth noting that the particular non-extensional contexts provided involve only con-
junction or only disjunction, both often thought of as extensional.27

In the context of R, at least, Williamson’s definition of extensional context, with 
⊃ and ≡, would say that (s ∧ r, s) is an extensional context, an (⊃, ≡)-extensional 
context in the nomenclature of Sect. 3. This is not the case for many of the weaker 
relevant logics, a fact which is a consequence of the results of Slaney (1984). Many 
of the weaker relevant logics do not have any theorems that lack implications, and 

as t → A. The equivalence of the two definitions is demonstrated by Mares and Standefer (2017), among 
others.
26 Viewing E as incorporating a modal element in its conditional was a point emphasized by Anderson 
and Belnap (1975), as can be seen from the subtitle to Entailment, namely “The logic of relevance and 
necessity.”
27 Cf. Gabbay (1978) corollary 21.
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the (⊃, ≡)-extensionality scheme does not add any arrows not contained in A, B, or 
C. Therefore, in such logics, (⊃, ≡)-extensionality will not be an interesting or use-
ful concept.

One might wonder whether there is an extension of R, or any of its sublogics, in 
which ∧ and ∨ generate extensional contexts. We can provide a negative answer to 
this. Let us say that B.Ext is the logic obtained by B by adding the axioms

Ext1 (A ↔ B) → ((A ∧ C) ↔ (B ∧ C)), and
Ext2 (A ↔ B) → ((A ∨ C) ↔ (B ∨ C)).

These axioms may remind the reader of the (Factor) axioms studied by Urbas and 
Sylvan (1989):

F1 (A → B) → ((A ∧ C) → (B ∧ C)), and
F2 (A → B) → ((A ∨ C) → (B ∨ C)).

The (Factor) axioms are known to cause problems for relevant logics, in particular 
leading to violations of variable-sharing. A similar issue arises with the weaker exten-
sionality axioms. We begin by proving a lemma.

Lemma 4  Let (D, p) be a context built from the vocabulary {∧, ∨} and containing an 
occurrence of p. Then (A ↔ B) → (D(A) ↔ D(B)) is derivable in B.Ext.

Proof  The proof is by induction on the construction of D. If D is the atom p, then the 
result is immediate.

Suppose D is E ∧ F . There are two subcases: p occurs in both E and 
F or p occurs in only one. For the first subcase, by the inductive hypoth-
esis, both (A ↔ B) → (E(A) ↔ E(B)) and (A ↔ B) → (F (A) ↔ F (B)) 
are derivable. By some straightforward reasoning, it follows that 
(A ↔ B) → ((E(A) ∧ F (A)) ↔ (E(B) ∧ F (B))) is derivable.

For the second subcase, without loss of generality, we can assume that p occurs 
only in E. By the inductive hypothesis, (A ↔ B) → (E(A) ↔ E(B)) is deriv-
able. Using (Ext1), it follows that (A ↔ B) → ((E(A) ∧ F ) ↔ (E(B) ∧ F )) is 
derivable.

The case where D is E ∨ F  is similar, except that (Ext2) is used in the second 
subcase.� □

As a corollary, we have the following.

Corollary 3  The formula (p ↔ p) → (((p ∧ q) ∨ q) ↔ ((p ∧ q) ∨ q)) is derivable in 
B.Ext.

As a lemma, we will note that absorption is derivable in B.

Lemma 5  In B, ((A ∧ B) ∨ B) ↔ B is derivable.
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Combining this lemma with the preceding corollary gives the desired negative 
result.

Corollary 4  The logic B.Ext contains violations of variable-sharing.

Proof  Both (p ↔ p) → (((p ∧ q) ∨ q) ↔ ((p ∧ q) ∨ q)) and ((p ∧ q) ∨ q) ↔ q are 
derivable. Using some simple transitivity moves, it follows that (p ↔ p) → (q ↔ q) 
is derivable.� □

As can be seen from the proofs, this result used very little as far as logical resources. 
Therefore, the hope of obtaining extensions of the standard relevant logics in which 
{∧, ∨} generate extensional contexts is unsatisfiable. Although the extensionality 
axioms, (Ext1) and (Ext2), are weaker than the (Factor) axioms, (F1) and (F2), they 
give rise to what are, essentially, the same problems. Let us turn to the other connec-
tives in relevant logics.

There is another binary connective, fusion (◦), that is often considered in rele-
vant logics.28 The set of connectives {→, ¬, ◦} is sometimes informally described as 
intensional, or non-extensional. If we consider the contexts built from these connec-
tives, we find that they are all extensional in R.

Proposition 2  Let (C, p) be a context built from atoms and only the connectives →, ¬, 
and ◦. Then, if p occurs in C, (C, p) is extensional in R.

Proof  The connective ◦ is definable in R as A ◦ B =Df ¬(A → ¬B). The result is 
then proved by induction on structure of C, which is straightforward using axioms 
(8) and (11). The inductive hypothesis is that ⊢R (A ↔ B) → (D(A) ↔ D(B)), for 
less complex contexts (D, p).

For the conditional case, the context is (D → E, p). As 
(D(A) → E(A)) → (D(A) → E(A)) is provable by axiom (1), we can prove 

	 (A ↔ B) → ((A ↔ B) → ((D(A) → E(A)) → (D(B) → E(B))))

with the two appeals to the inductive hypothesis and some simple transitivity moves 
available in R. An appeal to axiom (11) then yields half of the desired result. The 
other half is obtained similarly.

For the negation cases, we use (8) and the desired result follows immediately.� □
Without the caveat that the p occurs in C, there can be a failure of extensionality 

for reasons of variable-sharing. Let C be r. Then (r, p) will be a failure of extensional-
ity, as (p ↔ q) → (r ↔ r) would violate variable-sharing and so is not a theorem.

For logics that lack axioms (8), (10), or (11), the analog of proposition 2 may fail. 
In weaker logics, some contexts built from the connectives {→, ¬, ◦} can fail to be 
extensional. All the standard relevant logics include the rule form of axiom (9) used 
in the proof, so we will not consider dropping it here.

28 See Read (1988) for a sustained discussion and defense of fusion.

1 3

Page 13 of 23    199 



Synthese         (2025) 206:199 

Let us look at some examples of failures of extensionality in logics lacking axioms 
(8), (10), or (11). We start with the logic RW.29

Proposition 3  In RW, the context (r → r , r) is not extensional.

Proof  We leave it to the reader to find a countermodel using MaGIC.

Next we will consider the logic T.30 In T, fusion is not definable in terms of nega-
tion and conditional. Contexts built from fusion fail to be extensional.

Proposition 4  In T, (p ◦ r , p) is not extensional.

Proof  We leave it to the reader to find a countermodel using MaGIC.

Although contexts built from fusion can fail to be extensional, in T, many contexts 
built from the vocabulary {¬, →} are still extensional, as in R.

Proposition 5  In T, all contexts (C, p) constructed from the vocabulary {→, ¬} and 
in which p occurs in C are extensional.

Proof  The negation and conditional cases from the proof from proposition 2 can be 
reproduced here, omitting fusion.

It is worth looking at an example of a failure of extensionality for contexts built 
from negation that can be found in the logic B.31 Some formula contexts in the basic 
vocabulary fail to be extensional in B, beyond the examples provided above.

Lemma 6  In B, the formula context (¬p, p) is not extensional.

Proof  In B, 

	 (p ↔ q) → (¬p ↔ ¬q)

is invalid. We can adapt the matrix from the proof of lemma 1 to show this. We 
change the set of designated values to {1}, replace the conditional table with the 
following table and all valuations on the resulting matrix assign all the theorems of 
B designated values.32 The valuation v where v(p) = 1 and v(q) = 1

2  is a counterex-
ample to the target formula.

29 RW can be obtained from the axiomatization of R by dropping axiom (11).
30 The logic T can be obtained from the axiomatization of R by removing (10) and adding 
(A → ¬A) → ¬A.
31 The logic B can be obtained from R by dropping axioms (8) − −(11) and adding the rules 
A → ¬B ⇒ B → ¬A, A → B ⇒ (C → A) → (C → B), and A → B ⇒ (B → C) → (A → C).
32 This countermodel was found using John Slaney’s program MaGIC.� □
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→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

To obtain HYPE, or at least its logical truths, from R, we add A → (B → A) and 
trade axiom (8) for its rule form, A → ¬B ⇒ B → ¬A. It follows that we can obtain 
HYPE by adding some axioms to B. B shares with HYPE the feature of having con-
traposition as a rule but, crucially, not as an axiom, which results in the failure of the 
pertinent instance of the extensionality scheme above. In fact, this example extends 
to HYPE as well. This provides an example of hyperintensionality in B.TRIV, as 
the context (¬p, p) is also hyperintensional in B.TRIV, and so in all sublogics. A 
similar point holds for HYPE, and in fact, the same matrix demonstrates the failure 
of extensionality. Thus, HYPE, and any sublogic of HYPE.TRIV also exhibits hyper-
intensionality in the same sense as relevant logics.

We have shown that it is not possible to extend a relevant logic at least as strong 
as B so that contexts built from {∧, ∨} are extensional while maintaining variable-
sharing. One might wonder whether it is possible to extend R, or indeed any relevant 
logic, with a necessity operator where the connectives {∧, ∨} do not generate hyper-
intensional contexts while maintaining variable-sharing. We will now show that this 
is not possible.

For our result, we will add the axioms

Int1 �(A ↔ B) → �((A ∧ C) ↔ (B ∧ C)), and
Int2 �(A ↔ B) → �((A ∨ C) ↔ (B ∨ C))

as well as the rule

	● (Cong), A ↔ B ⇒ �A ↔ �B,

to B. Let us call this logic B.Int.

Lemma 7  In B.Int, if (D, p) is any context in the vocabulary {∧, ∨} in which p occurs 
in D, then �(A ↔ B) → �(D(A) ↔ D(B)) is derivable.

Proof  The proof is by induction on the construction of D. For the base case, 
�(A ↔ B) → �(A ↔ B) is an axiom

Suppose D is of the form E ∧ F . Without loss of generality, suppose that p occurs 
in E. By the inductive hypothesis, �(A ↔ B) → �(E(A) ↔ E(B)) is derivable. An 
instance of (Int1) is �(E(A) ↔ E(B)) → �((E(A) ∧ F ) ↔ (E(A) ∧ F )). By sim-
ple transitivity moves, �(A ↔ B) → �((E(A) ∧ F ) ↔ (E(B) ∧ F )) is derivable.

The case where D is E ∨ F  is similar.� □
 

We then use the fact recorded in lemma 5 to obtain the following.
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Lemma 8  In B.Int, �
(

((A ∧ B) ∨ B) ↔ ((A ∧ B) ∨ B)
)

↔ �(B ↔ B) is 
derivable.

Proof  As noted in lemma 5, ((A ∧ B) ∨ B) ↔ B is derivable. By some simple tran-
sitivity moves, it then follows from the derivability of (B ↔ B) ↔ (B ↔ B) that (

((A ∧ B) ∨ B) ↔ ((A ∧ B) ∨ B)
)

↔ (B ↔ B) is derivable. One application of 
(Cong) then results in the desired formula.� □

The previous lemmas suffice for the following corollary.

Corollary 5  There are violations of variable-sharing in B.Int.

Proof  By lemma 7, �(p ↔ p) → �(((p ∧ q) ∨ q) ↔ ((p ∧ q) ∨ q)) is derivable. 
Using simple transitivity moves with lemma 8, we obtain �(p ↔ p) → �(q ↔ q).□

As with the variable-sharing violation from the (Ext1) and (Ext2) axioms, the 
proofs did not require much from the base logic. The modal resources required are 
fairly minimal as well, using only the rule (Cong). In fact, most standard relevant 
modal logics use the stronger rule (Mono), A → B ⇒ �A → �B. Therefore, avoid-
ing hyperintensional contexts in the vocabulary {∧, ∨} while still satisfying the vari-
able-sharing criterion would require severe cuts to the logic. Given that satisfying the 
variable-sharing criterion is a necessary condition for being a relevant logic, a wide 
array of modal extensions of standard relevant logics will contain hyperintensional 
contexts.

With these results in hand, let us turn to some further concepts for classifying for-
mula contexts and some discussion.

6  Discussion

In this section, we will begin by discussing some further concepts for classifying 
formula contexts.

Odintsov and Wansing (2021) adopt an alternative notion of hyperintensional-
ity, using self-extensionality,33 also known as congruentiality,34 which they argue is 
closer to the suggestions of Cresswell (1975).35 We will call the concept they use ⊢L
-congruentiality, where ⊢L is the consequence relation of L.36

33 See Wójcicki (1988, 342), who uses the term ‘selfextensional’, Font (2016, ch. 7), Avron (2017), for 
example. Thanks to Rohan French and Andrew Tedder for references.
34 See Humberstone (2016, 19), among others.
35 In this paper, we do not address the interpretive point concerning Cresswell’s article.
36 We have been discussing logics as sets of logical truths, or theorems, but discussion of Odintsov and 
Wansing’s proposal requires using consequence relations. A single set of logical truths can be associated 
with multiple consequence relations, so some care must be taken in moving from L viewed as a set of logi-
cal truths to a consequence relation.
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Definition 5  ⊢L-congruentiality

A formula context (C, p) is ⊢L-congruential iff for all formulas A and B,

	● if A ⊢L B and B ⊢L A, then C(A) ⊢L C(B) and C(B) ⊢L C(A).

A logic L is ⊢L-congruential iff all formula contexts are ⊢L-congruential.
 

A context is hyperintensional, in this sense, iff it is not ⊢L-congruential. The idea 
behind this concept is that the phenomenon of hyperintensionality is concerned with 
distinguishing logically equivalent formulas. We can adapt their definition to the pres-
ent setting, defining ↔-congruentiality, following Humberstone (2011 484–485).37

Definition 6  ↔-congruentiality. A formula context (C, p) is ↔-congruential (in L) iff 
for all formulas A and B,

	● if ⊢L A ↔ B, then ⊢L C(A) ↔ C(B).

A logic L is ↔-congruential iff all formula contexts are congruential in L.
Relevant logics and their usual modal extensions are ↔-congruential, although 

there are modal extensions which are not.38 We can make this claim more precise.

Theorem 3  Let L be any sublogic of R extending B that is closed under the rules of 
B. Let L.Cong be L extended by the rule (Cong). Then every formula context in the 
vocabulary {¬, →, ∧, ∨,�} is ↔-congruential in L.Cong.

Proof  The proof is by induction on the complexity of the context C. The base cases 
are immediate, and the cases for the non-modal connectives are handled by the rules 
and axioms of B. The case where C has the form �D is handled by the rule (Cong).
� □

In particular, the context (p ∧ r, p) is ↔-congruential while also being 
hyperintensional.

While Odintsov and Wansing think that failure of ⊢L-congruentiality is the proper 
concept for formalizing the phenomenon of hyperintensionality, it is worth distin-
guishing failures of ⊢L-congruentiality, or failures of ↔-congruentiality, and hyper-
intensionality, as defined in §3, for two reasons. First, hyperintensionality builds in 
an explicit modal element that is absent in both definitions of congruentiality in the 
sense that the former, but not the latter requires a modal operator be used in its defini-

37 This adaptation is not uncommon, for which see, e.g., (Williamson, 2006, 313), but it forfeits a potential 
virtue of ⊢L-congruentiality, namely being free of displayed connectives and instead involving only the 
salient consequence relation, rather than also involving various connectives. There is no apparent way to 
adapt the definition of hyperintensionality, in the sense from §3, to be free of connectives, as it is not clear 
how one would maintain the modal element appropriately.
38 See Savić and Studer (2019) and Standefer (2023c) for examples.
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tion. It is not clear how one would add a modal element to ⊢L-congruentiality, and 
there are apparently different options for inserting modalities into ↔-congruentiality.

The second reason is that once one is working with a modal logic for which the 
rule (Nec), A ⇒ �A, fails, the relationship between hyperintensionality and failures 
of congruentiality becomes more complex, as noted by Williamson (2006). This is 
particularly salient in the present context, because (Nec) fails in many relevant modal 
logics, and it is not required by the relevant analogs of Kripke models.39

The relationship between hyperintensionality and failures of congruentiality 
becomes more complex with certain extensions of the language as well. With cer-
tain extensions of the language, some contexts can fail to be congruential but also 
be non-hyperintensional. As noted by Williamson  (2006, 315), the addition of an 
actuality operator A to the language can render (�p, p) a non-congruential yet non-
hyperintensional context.40 This example suggests that as the language is enriched, 
the relationship between non-congruentiality and hyperintensionality will become 
more complex, as they track slightly different features of the logics.

Presenting congruentiality and hyperintensionality as rivals is, however, artificial. 
One can use both concepts for classifying formula contexts, and using one does not 
preclude using the other. They are both interesting and important. It is, we think, 
worth distinguishing them, and they could potentially be put to different logical uses.

It is worth pointing out a feature of relevant logics that is, in some ways, similar 
in spirit to hyperintensionality. Classical logic is monothetic in the sense that for any 
two logical truths A and B, A ↔ B is a logical truth.41 From the point of view of clas-
sical logic, there is only a single logical truth. HYPE is also monothetic, replacing the 
classical biconditional with the biconditional of HYPE, and similarly for intuitionis-
tic logic. Relevant logics are polythetic meaning that there are non-equivalent logical 
truths, that is, there are logical truths A and B such that A ↔ B is not a logical truth.42 
As an example, we note that ⊢R p → p and ⊢R q → q, but R(p → p) ↔ (q → q). In 
this sense, relevant logics permit one to draw distinctions between logical truths. By 
contrast, any logic that obeys the weakening rule, A ⇒ B → A, will be monothetic.

There is a special case of being polythetic that is worth bringing out. Let us say 
that a formula A is a classical tautology in the vocabulary {¬, ∧, ∨} iff there is a 
formula C whose connectives are all from the set {¬, ∧, ∨} such that C is a classical 
tautology and A can be obtained from C by substituting formulas for atoms. Consider 
two formulas A and B that are classical tautologies in the vocabulary {¬, ∧, ∨}. In 
R, there are classical tautologies that are theorems but not equivalent. For example, 
⊢R p ∨ ¬p and ⊢R q ∨ ¬q, but those two instances of excluded middle are not equiva-

39 See Fuhrmann (1990) or Standefer (2025b) for more details.
40 To elaborate, Crossley and Humberstone (1977) distinguish two kinds of validity when actuality is in the 
language, real world validity and general. One kind, real world validity, renders AB ↔ B valid. Despite 
this, �Aq ↔ �q is not valid, whence (�p, p) is non-congruential. Verifying non-hyperintensionality will 
be left to the reader.
For discussion of real world and general validity, see Zalta (1988), Hanson (2006), Zalta and Nelson 
(2012), and French (2012), among others.
41 See Humberstone (2011, 231).
42 This point was also made by Standefer (2019), albeit in a discussion of justification logics.
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lent, as R(p ∨ ¬p) ↔ (q ∨ ¬q). This last biconditional must fail, on pain of violating 
variable-sharing. Thus even in the relevant logics in which all classical tautologies 
are theorems, such as R, relevant logics can draw distinctions among those tautolo-
gies.43 This marks an important difference with, say, HYPE. In HYPE one can distin-
guish classical tautologies, such as p ∨ ¬p and q ∨ ¬q, since they are not theorems of 
HYPE. Any two formulas that are theorems of HYPE are also equivalent in HYPE. 
In contrast, relevant logics can draw distinctions among classical tautologies, even 
when those tautologies are theorems.

Drawing distinctions among valid formulas and classical tautologies carries over 
to modal extensions of the relevant logics as well. The logics can draw distinctions 
among classical modal logical truths, including those that have been necessitated. 
One can have an S5-type extension of R that still distinguishes �(p ∨ ¬p) and 
�(q ∨ ¬q) while having both as theorems. Just as different logical truths may not 
imply each other, different necessary logical truths may not imply each other either. 
While this feature is different from hyperintensionality and (failures of) congruential-
ity, it formalizes a similar idea, namely that of drawing distinctions among necessary 
or logical truths.

The results of this paper show that almost all the common modal extensions of rel-
evant logics have hyperintensional contexts. This result extends to HYPE, although 
the range of such contexts appears more limited there than for R. As one weakens the 
logic, the range of hyperintensional contexts grows, a feature that extends to HYPE 
and other substructural logics as well. Hyperintensionality is of interest in a wide 
range of philosophical applications of logic, such as logics of belief and epistemic 
logics. In epistemic logics, we think of ‘�’ as representing knowledge, so that ‘�p
’ should be understood as saying ‘the agent knows p’ and in doxastic logics ‘�p’ 
should be understood as saying ‘the agent believes p’.44 The most common modal 
principles for doxastic and epistemic logics are consequences of the TRIV principles. 
This means that adding the standard principles for doxastic and epistemic logics to, 
say, R will result in a sublogic of R.TRIV. This, in turn, means that one of the hyper-
intensionality result will straightforwardly apply to these logics.

In the context of epistemic logic, a context being hyperintensional means that an 
agent’s knowledge will not be closed under known equivalence in the following sense. 
The agent knowing that p ↔ q need not imply that they know (p ∧ r) ↔ (q ∧ r), to 
use the example from theorem 1. If one adopts a base logic weaker than R, one will 
have more examples where knowing one equivalence does not lead to knowing oth-
ers, such as knowing p ↔ q but not knowing ¬p ↔ ¬q.45

Such failures open up possibilities for representing agents that are limited in dif-
ferent ways in how they can use their knowledge. It is natural, in this context, to 
represent an agent’s knowledge as a logical theory, which is a set of formulas closed 

43 There are many standard relevant logics in which classical tautologies in the vocabulary {¬, ∧, ∨} are 
not theorems. B is an example of such, but one does not have to weaken the logic that much for examples. 
See Slaney (1984) for discussion.
44 See Meyer and van der Hoek (1995), van Ditmarsch et al. (2015), or Rendsvig et al. (2023) for an intro-
duction to epistemic logic.
45 Reasons why some of these equivalences fail might be obtained from recent work on topics and topic-
transforming operators, such as that of Berto (2022), Ferguson and Logan (2025), and Tedder (2025).
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under provable implications and adjunction. More carefully, a theory in the logic L 
is a set X of formulas such that (i) if ⊢L A → B and A ∈ X , then B ∈ X  and (ii) if 
A ∈ X  and B ∈ X , then A ∧ B ∈ X . A context being hyperintensional means that 
instance of the hyperintensionality scheme is not provable. This in turn gives rise to 
theories containing the antecedent but not the consequent, representing agents whose 
knowledge is not closed under substitutions of certain known equivalences.46 Addi-
tionally, there will be theories in which the agent’s knowledge will be closed under 
some equivalences, but not others. As an example, there will be a theory in which the 
agent knows p ↔ q but not (p ∧ r) ↔ (q ∧ r) and the agent knows both p ↔ s and 
(p ∧ r) ↔ (s ∧ r), which is to say �(p ↔ q),�(p ↔ s), and �((p ∧ r) ↔ (s ∧ r)) 
are all in the theory but �((p ∧ r) ↔ (q ∧ r)) is not. While an agent’s knowledge 
will still be closed under provable implications and equivalences, there will be a lot 
of flexibility in representing an agent’s knowledge of true, or merely assumed true, 
equivalences.

One direction for future work that would be useful in the development of the 
epistemic logic application suggested above is precisely characterizing the range 
of hyperintensional contexts in the different relevant and substructural logics. This 
would be useful in better understanding the ways in which non-classical epistemic 
logics avoid, or fail to avoid, problems of logical omniscience.47

The hyperintensionality discussed above is the sort that arises naturally in the log-
ics under consideration. It arises in an axiomatic setting from adding a selection of 
more or less standard axioms to a base relevant logic. It arises naturally in the con-
text of models as well, if one uses the straightforward approach of adding a binary 
modal accessibility relation to a model for a relevant logic. This is all to say that the 
hyperintensionality described above arises without the need for any additional logical 
machinery or any formal “funny business.” Making the bog standard extensions of 
relevant logics, or indeed a range of substructural logics, with modal operators will 
result in hyperintensional contexts. One can, of course, appeal to various modeling 
techniques used to obtain hyperintensional contexts over classical logic to obtain 
such contexts in relevant logics.48 These modeling techniques will likely interact 
with the natural hyperintensionality of relevant logics in interesting ways.

To summarize, relevant logics are hyperintensional, in at least one important sense, 
when considering many natural extensions with necessity operators. Related to the 
hyperintensional contexts, there are failures of extensionality for relevant logics, and 
the range of non-extensionality and hyperintensionality grows as one weakens the 
logic. Relevant logics and their modal extensions are, generally, congruential, so they 
are not hyperintensional in the sense preferred by Odintsov and Wansing. Nonethe-
less, we do agree with Odintsov and Wansing’s closing suggestion to study non-self-

46 Given the results concerning ↔-congruentiality at the start of this section, we want to emphasize these 
are not provable equivalences.
47 See, for example, Sedlár (2015, 2016), Standefer et al., (2023), and Ferenz (2023), among others, for 
some discussion of logical omniscience in non-classical settings. For a contrasting recent discussion of 
omniscience in the setting of classical logic, see Hawke, Özgün, and Berto (2020).
48 See Sedlár  (2019) for a general framework for hyperintensionality in the context of classical logic. 
Application and generalization of this framework to relevant logics has, as far as we know, not been 
explored.
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extensional, or non-congruential, operators, as non-classical logics likely have much 
to contribute areas in which they are used. Despite being congruential, relevant logics 
are polythetic, which allows them to draw distinctions among logical truths in ways 
reminiscent of hyperintensionality. Finally, we suggest that it would be worth explor-
ing the use of this hypreintensionality in the context of epistemic and doxastic logics, 
as there is general interest in the phenomenon of hyperintensionality in those areas.

Acknowledgements  I would like to thank Greg Restall, Rohan French, Lloyd Humberstone, Andrew Ted-
der, Hannes Leitgeb, Heinrich Wansing, Peter Hawke, Hitoshi Omori, Masanobu Toyooka, Aaron Cot-
noir, Franz Berto, Gillian Russell, Ren-June Wang, anonymous referees at this journal, and audiences at 
the Kyoto University Workshop on the Logic of Agent, the University of St Andrews, LORI9, and the 
NTU-LMU workshop on Logic in Synonymy in Logic and AI for comments and discussion that greatly 
improved this paper.

Author contributions  Everything.

Funding  None.

Data availability  Not applicable.

Declarations

Competing interests  None.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit ​h​t​t​p​:​/​/​c​r​e​a​t​i​v​e​c​o​m​m​o​n​s​.​o​r​g​/​l​i​c​e​n​
s​e​s​/​b​y​/​4​.​0​/​​​​​.​​

References

Alechina, N., & Logan, B. (2010). Belief ascription under bounded resources. Synthese, 173(2), 179–197. 
https://doi.org/10.1007/s11229-009-9706-6

Anderson, A. R., & Belnap, N. D. (1975). Entailment: The logic of relevance and necessity (Vol. I). Princ-
eton University Press.

Avron, A. (2017). Self-extensional three-valued paraconsistent logics. Logica Universalis, 11(3), 297–315. 
https://doi.org/10.1007/s11787-017-0173-4

Berto, F., Hawke, P., & Özgün, A. (2022). Topics of thought. The logic of knowledge, belief, imagination. 
Oxford: Oxford University Press.

Berto, F., & Jago, M. (2019). Impossible worlds. Oxford University Press.
Berto, F., & Nolan, D. (2021). Hyperintensionality. In E. N. Zalta (Ed.), The Stanford encyclopedia of 

philosophy . (Spring 2021 ed.). Metaphysics Research Lab, Stanford University. 
Berto, F., Ripley, E., Priest, G., & French, R. (2018). Williamson on counterpossibles. Journal of Philo-

sophical Logic, 47(4), 693–713. https://doi.org/10.1007/s10992-017-9446-x
Bimbó, K. (2007). Relevance logics. In D. Jacquette (Ed.), Philosophy of logic, handbook of the philoso-

phy of science (Vol. 5, pp. 723–789). Elsevier.
Boolos, G. (1993). The logic of provability. Cambridge University Press.

1 3

Page 21 of 23    199 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s11229-009-9706-6
https://doi.org/10.1007/s11787-017-0173-4
https://doi.org/10.1007/s10992-017-9446-x


Synthese         (2025) 206:199 

Brady, R. (Ed.).(2003). Relevant logics and their rivals, volume II. A continuation of the work of Richard 
Sylvan. Robert Meyer, Val Plumwood and Ross Brady. Ashgate.

Brady, R. T. (1984). Natural deduction systems for some quantified relevant logics. Logique Et Analyse, 
27(8), 355–377.

Cresswell, M. J. (1975). Hyperintensional logic. Studia Logica, 34(1), 25–38. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​/​b​f​
0​2​3​1​4​4​2​1​​​​​​​

Crossley, J. N., & Humberstone, L. (1977). The logic of “actually”. Reports on Mathematical Logic, 8, 
11–29.

Dunn, J. M., & Restall, G. (2002). Relevance logic. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of 
philosophical logic (2nd edn.) (pp. 1–136). Kluwer.

Ferenz, N. (2023 forthcoming). First-order relevant reasoners in classical worlds. The Review of Symbolic 
Logic, 1–26. https://doi.org/10.1017/s1755020323000096

Ferenz, N., & Tedder, A. (2022). Neighbourhood semantics for modal relevant logics. Journal of Philo-
sophical Logic. https://doi.org/10.1007/s10992-022-09668-2

Ferguson, T. M., & Logan, S. A. (2025). Topic transparency and variable sharing in weak relevant logics. 
Erkenntnis, 90, 1227–1254. https://doi.org/10.1007/s10670-023-00748-6

Font, J. M. (2016). Abstract algebraic logic. An introductory textbook. College Publications.
French, R. (2012). An argument against general validity? thought. A Journal of Philosophy, 1(1), 4–9. 

https://doi.org/10.1002/tht3.1
Fuhrmann, A. (1990). Models for relevant modal logics. Studia Logica, 49(4), 501–514. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​

0​.​1​0​0​7​/​b​f​0​0​3​7​0​1​6​1​​​​​​​
Gabbay, D. (1978). What is a classical connective? Mathematical Logic Quarterly, 24(1–6), 37–44. ​h​t​t​p​s​

:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​2​/​m​a​l​q​.​1​9​7​8​0​2​4​0​1​0​6​​​​​​​
Hanson, W. H. (2006). Actuality, necessity, and logical truth. Philosophical Studies, 130(3), 437–459. 

https://doi.org/10.1007/s11098-004-5750-8
Hawke, P., Özgün, A., & Berto, F. (2020). The fundamental problem of logical omniscience. Journal of 

Philosophical Logic, 49(4), 727–766. https://doi.org/10.1007/s10992-019-09536-6
Humberstone, L. (1986). Extensionality in sentence position. Journal of Philosophical Logic, 15(1), 

27–54. https://doi.org/10.1007/bf00250548
Humberstone, L. (1997). Singulary extensional connectives: A closer look. Journal of Philosophical 

Logic, 26(3), 341–356. https://doi.org/10.1023/a:1004240612163
Humberstone, L. (2011). The connectives. MIT Press.
Humberstone, L. (2016). Philosophical applications of modal logic. London: College Publications.
Leitgeb, H. (2019). HYPE: A system of hyperintensional logic. Journal of Philosophical Logic, 48(2), 

305–405. https://doi.org/10.1007/s10992-018-9467-0
Logan, S. A. (2024). Relevance logic. Elements in philosophy and logic. Cambridge University Press. 

https://doi.org/10.1017/9781009227773
Mares, E. D. (2000). The incompleteness of RGL. Studia Logica, 65(3), 315–322. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​2​

3​/​A​:​1​0​0​5​2​8​3​6​2​9​8​4​2​​​​​​​
Mares, E. D. (2004). Relevant logic: A philosophical interpretation. Cambridge University Press.
Mares, E. D.: In, R. L.: Zalta, E. N., Nodelman, U. (eds.). (2022). The stanford encyclopedia of philosophy. 

(edn ed.). Metaphysics Research Lab, Stanford University, Fall.
Mares, E. D., & Standefer, S. (2017). The relevant logic E and some close neighbours: A reinterpretation. 

IFCoLog Journal of Logics and Their Applications, 4(3), 695–730.
Meyer, J. C., & van der Hoek, W. (1995). Epistemic logic for AI and Computer science. Cambridge Uni-

versity Press.
Nelson, M., & Zalta (2012). E.N.: A defense of contingent logical truths. Philosophical Studies, 157(1), 

153–162. https://doi.org/10.1007/s11098-010-9624-y
Nolan, D. (2014). Hyperintensional metaphysics. Philosophical Studies, 171(1), 149–160. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​

/​1​0​.​1​0​0​7​/​s​1​1​0​9​8​-​0​1​3​-​0​2​5​1​-​2​​​​​​​
Odintsov, S., & Wansing, H. (2021). Routley star and hyperintensionality. Journal of Philosophical Logic, 

50(1), 33–56. https://doi.org/10.1007/s10992-020-09558-5
Øgaard, T. F. (2023). The weak variable sharing property. Bulletin of the Section of Logic, 52(1), 85–99. 

https://doi.org/10.18778/0138-0680.2023.05
Ono, H. (1977). On some intuitionistic modal logics. Publications of RIMS Kyoto University, 13, 687–722.
Read, S. (1988). Relevant logic: A philosophical examination of inference. Blackwell.
Rendsvig, R., Symons, J. & Wang Y. (2023). Epistemic logic. In E. N. Zalta (Ed.), The stanford encyclope-

dia of philosophy. (edn ed.). Metaphysics Research Lab, Stanford University, summer.

1 3

  199   Page 22 of 23

https://doi.org/10.1007/bf02314421
https://doi.org/10.1007/bf02314421
https://doi.org/10.1017/s1755020323000096
https://doi.org/10.1007/s10992-022-09668-2
https://doi.org/10.1007/s10670-023-00748-6
https://doi.org/10.1002/tht3.1
https://doi.org/10.1007/bf00370161
https://doi.org/10.1007/bf00370161
https://doi.org/10.1002/malq.19780240106
https://doi.org/10.1002/malq.19780240106
https://doi.org/10.1007/s11098-004-5750-8
https://doi.org/10.1007/s10992-019-09536-6
https://doi.org/10.1007/bf00250548
https://doi.org/10.1023/a:1004240612163
https://doi.org/10.1007/s10992-018-9467-0
https://doi.org/10.1017/9781009227773
https://doi.org/10.1023/A:1005283629842
https://doi.org/10.1023/A:1005283629842
https://doi.org/10.1007/s11098-010-9624-y
https://doi.org/10.1007/s11098-013-0251-2
https://doi.org/10.1007/s11098-013-0251-2
https://doi.org/10.1007/s10992-020-09558-5
https://doi.org/10.18778/0138-0680.2023.05


Synthese         (2025) 206:199 

Restall, G. (2000). An introduction to substructural logics. Routledge.
Routley, R., Plumwood, V., Meyer, R.K., & Brady, R.T. (1982). Relevant logics and their rivals (Vol. 1).  

Ridgeview.
Savić, N., & Studer, T. (2019). Relevant justification logic. Journal of Applied Logics, 6(2), 395–410.
Sedlár, I. (2015). Substructural epistemic logics. Journal of Applied Non-Classical Logics, 25(3), 256–

285. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​0​​8​0​/​1​1​​6​6​3​0​8​​1​.​2​0​1​5​​.​1​0​9​​4​3​1​3
Sedlár, I. (2016). Epistemic extensions of modal distributive substructural logics. Journal of Logic and 

Computation, 26(6), 1787–1813. https://doi.org/10.1093/logcom/exu034
Sedlár, I. (2019). Hyperintensional logics for everyone. Synthese, 198(2), 933–956. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​

0​7​/​s​1​1​2​2​9​-​0​1​8​-​0​2​0​7​6​-​7​​​​​​​
Slaney, J. K. (1984). A metacompleteness theorem for contraction-free relevant logics. Studia Logica, 

43(1–2), 159–168. https://doi.org/10.1007/BF00935747
Standefer, S. (2019). Tracking reasons with extensions of relevant logics. Logic Journal of the IGPL, 

27(4), 543–569. https://doi.org/10.1093/jigpal/jzz018
Standefer, S. (2022). What is a relevant connective? Journal of Philosophical Logic, 51(4), 919–950. 

https://doi.org/10.1007/s10992-022-09655-7
Standefer, S. (2023a). Hyperintensionality in relevant logics. In N. Alechina, A. Herzig, & F. Liang (Eds.), 

Logic, rationality, and interaction: 9th international workshop, LORI 2023 (pp. 238–250). Jinan, 
China Nature Switzerland: Springer. October 26?29, 2023, Proceedings, pp. ​h​t​t​p​s​:​/​/​d​o​i​.​o​r​g​/​1​0​.​1​0​0​7​
/​9​7​8​-​3​-​0​3​1​-​4​5​5​5​8​-​2​_​1​8​​​​​​​

Standefer, S. (2023b). Varieties of relevant S5. Logic and Logical Philosophy, 32(1), 53–80. ​h​t​t​p​s​:​/​/​d​o​i​.​o​
r​g​/​1​0​.​1​2​7​7​5​/​L​L​P​.​2​0​2​2​.​0​1​1​​​​​​​

Standefer, S. (2023c). Weak relevant justification logics. Journal of Logic and Computation, 33(7), 
1665–1683.

Standefer, S. (2024). Routes to relevance: Philosophies of relevant logics. Philosophy Compass, 19(2), 
e12965. https://doi.org/10.1111/phc3.12965

Standefer, S. (2025a). Variable-sharing as relevance. In I. Sedlár, S. Standefer, & A. Tedder (Eds.), New 
directions in relevant logic (pp. 97–117). Springer.

Standefer, S. (2025b). Relevant logic: Implication, modality, quantification. In press. 
Standefer, S., Shear, T., & French, R. (2023). Getting some (non-classical) closure with justification logic. 

Asian Journal of Philosophy, 2(2), 1–25. https://doi.org/10.1007/s44204-023-00065-3
Tedder, A. (2025). Topics in relevant logic: A semantic perspective. Erkenntnis, forthcoming.
Urbas, I., & Sylvan, R. (1989). Prospects for decent relevant factorisation logics. Journal of Non-Classical 

Logic, 6(1), 63–79.
van Ditmarsch, H., Halpern, J. Y., van der Hoek, W., & Kooi, B. (2015). An introduction to logics of 

knowledge and belief. In H. van Ditmarsch, J. Y. Halpern, W. van der Hoek, & B. Kooi (Eds.), Hand-
book of epistemic logic (pp. 1–51). College Publications.

Verbrugge, R. L. (2017). Provability logic. In E. N. Zalta (Ed.), The stanford encyclopedia of philosophy. 
(edn ed.). Metaphysics Research Lab, Stanford University, summer.

Wansing, H. (1990). A general possible worlds framework for reasoning about knowledge and belief. 
Studia Logica, 49(4), 523–539. https://doi.org/10.1007/bf00370163

Williamson, T. (2006). Indicative versus subjunctive conditionals, congruential versus non-hyperinten-
sional contexts. Philosophical Issues, 16(1), 310–333. ​h​t​t​p​s​:​​/​/​d​o​i​​.​o​r​g​/​1​​0​.​1​1​​1​1​/​j​.​​1​5​3​3​-​​6​0​7​7​.​2​​0​0​6​.​​0​0​
1​1​6​.​x

Wójcicki, R. (1988). Theory of Logical Calculi: Basic theory of consequence operations. Dordrecht, Bos-
ton and London: Kluwer Academic Publishers.

Zalta, E. N. (1988). Logical and analytic truths that are not necessary. The Journal of Philosophy, 85(2), 
57–74. https://doi.org/10.2307/2026992

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

1 3

Page 23 of 23    199 

https://doi.org/10.1080/11663081.2015.1094313
https://doi.org/10.1093/logcom/exu034
https://doi.org/10.1007/s11229-018-02076-7
https://doi.org/10.1007/s11229-018-02076-7
https://doi.org/10.1007/BF00935747
https://doi.org/10.1093/jigpal/jzz018
https://doi.org/10.1007/s10992-022-09655-7
https://doi.org/10.1007/978-3-031-45558-2_18
https://doi.org/10.1007/978-3-031-45558-2_18
https://doi.org/10.12775/LLP.2022.011
https://doi.org/10.12775/LLP.2022.011
https://doi.org/10.1111/phc3.12965
https://doi.org/10.1007/s44204-023-00065-3
https://doi.org/10.1007/bf00370163
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.2307/2026992

	﻿On the hyperintensionality of relevant logics and some of their rivals
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿2﻿ ﻿Relevant logics
	﻿﻿3﻿ ﻿Classifying contexts
	﻿﻿4﻿ ﻿Hyperintensionality
	﻿﻿5﻿ ﻿Extensionality and some limitative results
	﻿﻿6﻿ ﻿Discussion
	﻿References﻿


