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Abstract. In this article, we present a definition of hyperintensionality
appropriate to relevant logics. We then show that relevant logics are hy-
perintensional in this sense, drawing consequences for other non-classical
logics, including HYPE and some substructural logics. We further prove
some positive and negative results concerning extensionality and hyper-
intensionality in relevant logics. We close by discussing related concepts
for classifying formula contexts and potential applications of these results
in the area of epistemic logic.

1 Introduction

Hyperintensionality, being able to distinguish necessarily equivalent formulas,
has become an important topic in philosophical logic.1 The growing impor-
tance of hyperintensionality for philosophical concepts has been highlighted by
Nolan [39], calling it the “hyperintensional revolution.” One can, of course,
extend classical logic with hyperintensional operators, but one might wonder
whether other logics could offer something distinctive with respect to hyperin-
tensionality.2

Relevant logics provide examples of logics where there are surprises with
respect to hyperintensionality. Relevant logics are a family of non-classical log-
ics that can be used to draw fine-grained distinctions, including distinguishing
logical truths. As we will see, many modal extensions of relevant logics exhibit
hyperintensionality, and this includes extensions with standard axioms and rules.
As an example, adding a standard assortment of S5 axioms and rules to a rel-
evant logic will result in a modal logic with hyperintensional contexts, whereas
adding those to classical logic does not yield a logic with such contexts.3

1 See Berto and Nolan [4].
2 Some of the standard examples of hyperintensional operators added to classical logic,
often though not always modeled using impossible worlds, include belief operators,
knowledge operators, and conditional operators. See Wansing [62], Alechina and
Logan [1], and Berto et al [5], among others, for recent examples, and see Berto
and Jago [7, ch. 7] for an overview of the work on epistemic logics. For a general
approach to hyperintensional operators, see Sedlár [49].

3 For concreteness, we mean (K) □(A → B) → (□A → □B), (4) □A → □□A, (B)
A → □¬□¬A, (∧□) (□A ∧ □B) → □(A ∧ B), (Nec) A ⇒ □A, although as we will



While our focus is on extensions of the logics with modal operators, there is
a tradition in relevant logics of using the resources of the base logic to define
a kind of necessity operator. The most prominent example of this is the logic
E of entailment, defended by Anderson and Belnap [2]. One can ask whether
the defined necessity operators exhibit any sort of hyperintensionality. We will
argue that they do, providing a sense in which hyperintensionality is built into
the base relevant logics. In so doing, we will draw out some consequences for
other non-classical and substructural logics.

There is one additional place where discussion of hyperintensionality in non-
classical contexts has arisen. Recently, Leitgeb [31] defended the non-classical
logic HYPE as exhibiting a distinctive combination of simplicity and strength.
Among its claimed features is providing a kind of hyperintensionality, a claim
disputed by Odintsov and Wansing [40], who demonstrate that there is a sense of
hyperintensionality, related to congruentiality below, that the logic does not en-
joy. We will offer some support to Leitgeb’s claim, proceeding via a discussion of
relevant logics, showing that there is a sense in which HYPE is hyperintensional.

In the next section, we will supply some brief background on relevant logics,
in particular the logic R. Then, in §3 we will precisely define some concepts to
classify formula contexts, notably extensionality and hyperintensionality. In §4,
we will present our main results concerning hyperintensional contexts in relevant
logics. Then, in §5, we will make some observations concerning the concept of
extensionality, drawing out a consequence for HYPE, and we will obtain some
limitative results. Finally, in §6, we will look at two further definitions for clas-
sifying formula contexts and discuss some features of relevant logics reminiscent
of hyperintensionality but distinct from it. We will close by discussing some
potential upshots of our results for epistemic logics.4

2 Relevant logics

Relevant logics are a family of non-classical logics with a distinctive conditional,
or implication, connective.5 One of the important ways in which the relevant
conditional is distinctive can be found in Belnap’s variable-sharing criterion: If
A → B is valid, then A and B share a propositional variable. The variable-
sharing criterion is typically taken as a necessary condition on being a relevant
logic.6 We will focus on the standard logical vocabulary of {→,∧,∨,¬}, consid-
ering the addition of a modal operator □, below. The biconditional, A ↔ B,

see, many alternative sets of principles from S5 will work equally well for the present
point. While (∧□) is not typically taken as an axiom in S5, it is a theorem of the
logic. It is included here since it is a standard axiom for modal relevant logics and to
reassure the reader there is no funny business going on with the selection of modal
principles.

4 We note that this is an extended version of [53].
5 See Dunn and Restall [15], Bimbó [8], Mares [35], or Logan [32] for overviews of the
area. See Anderson and Belnap [2] and Routley et al. [45] for broader discussions.

6 See Standefer [57] for discussion of the variable-sharing criterion as sufficient for
being a relevant logic.



will be defined as (A → B)∧ (B → A). To contrast the relevant conditional and
biconditional with the classical material ones, we will use ⊃ and ≡ for the latter
connectives, defining A ⊃ B as ¬A ∨ B and A ≡ B as (A ⊃ B) ∧ (B ⊃ A). In
the context of relevant logics, and generally any non-classical logic, A ⊃ B and
A ≡ B will be defined as in classical logic.

While there are many relevant logics, our focus will mostly be on the logic R,
although we will look at a few others as well. R is a relatively strong logic.7 We
will present the axioms and rules for R, where ⇒ is used to demarcate premises
from conclusion in the rules.

(1) A → A
(2) (A ∧B) → A, (A ∧B) → A
(3) ((A → B) ∧ (A → C)) → (A →

(B ∧ C))
(4) A → (A ∨B), B → (A ∨B)
(5) ((A → C) ∧ (B → C)) → ((A ∨B) →

C)
(6) (A ∧ (B ∨ C)) → ((A ∧B) ∨ (A ∧ C))

(7) ¬¬A → A

(8) (A → ¬B) → (B → ¬A)

(9) (A → B) → ((B → C) → (A → C))

(10) A → ((A → B) → B)

(11) (A → (A → B)) → (A → B)

(12) A,A → B ⇒ B

(13) A,B ⇒ A ∧B

The logic R is the least set of formulas containing all the axioms and closed under
the rules. Other relevant logics can be obtained by variation of axioms (8)–(11),
dropping those axioms or possibly adding others, and by addition of other rules.
The focus will be on R, although we will briefly consider some weaker relevant
logics towards the end of §4 and afterwards. The logic E can be obtained from
R by changing axiom (10) to its rule form, A ⇒ (A → B) → B and adding
a reductio axiom, (A → ¬A) → ¬A. The logic T can be obtained from E by
dropping the rule A ⇒ (A → B) → B. The logic RW can be obtained from R
by dropping (11). The logic B, the weakest standardly considered relevant logic,
can be obtained from R by dropping axioms (8)–(11) and adding the following
rules.

– A → ¬B ⇒B → ¬A
– A → B ⇒ (C → A) → (C → B)

– A → B ⇒ (B → C) → (A → C)

There are other relevant logics one can consider, but we need not survey them
here.8

Finally, we will consider logics as sets of logical truths.9 Where A is a logical
truth, or theorem, of L, we will write, ⊢L A. Let us now turn to some concepts
for classifying formula contexts.

7 See Mares [34] for defense of R.
8 See Brady [11] or Standefer [56], among others, for some axiomatizations of common
relevant logics.

9 This is the framework FMLA of Humberstone [29].



3 Classifying contexts

Let us begin with some definitions. Following Williamson [63], define a formula
context as a pair (C, p), of a formula and an atom. Given a context (C, p), the
formula C(A) is what results by replacing every occurrence of p in C with the
formula A. We can then define an initial concept, extensionality for classical
logic, CL, as follows.

Definition 1 (Extensionality) A formula context (C, p) is extensional iff for
all formulas A and B,

– ⊢CL (A ≡ B)⊃ (C(A) ≡ C(B)).

This is a fine definition of extensionality for classical logic and its extensions.
It is not, however, appropriate for all non-classical logics. The reason is that in
many non-classical logics, including relevant logics, the interest is focused on the
primitive conditional connective, and the associated biconditional, rather than
the material conditional of the logic, and the associated material biconditional.10

Therefore, we will replace the definition of extensional context with one that uses
the appropriate conditional and biconditional of the logic.

Definition 2 (Extensionality in L) A formula context (C, p) is extensional
in the logic L iff for all formulas A and B,

– ⊢L (A ↔ B) → (C(A) ↔ C(B)).

This is a natural adaptation of Williamson’s definition to non-classical logics. For
a more general study of extensionality and related concepts, we would need to
make the relativity to the chosen conditional and biconditional explicit, so that
the two options above would be (⊃,≡)-extensionality and (→,↔)-extensionality,
respectively. There are alternative definitions of extensionality using different
combinations of →, ⊃, ↔, and ≡, or even other conditionals and biconditionals,
but we won’t explore those further here.11

Extensional contexts are those that do not draw a distinction between equiv-
alent formulas. Our interest here is not on extensional contexts per se, although
we will return to them later in the paper. Our interest is, rather, in a related
definition, that involves necessity, namely that of hyperintensional contexts.

To explain hyperintensional contexts, we will enrich the language with a
necessity operator, □, to which we will return below. With necessity in the
language, we can define hyperintensional contexts, although it will be worth-
while to define a related concept, intensional contexts. An intensional context

10 In the context of relevant logics, many of the contraction-free logics lack any theorems
not containing ‘→’, for which see Slaney [50]; so (⊃,≡)-extensionality will be a
less useful concept there. Yet, it still seems sensible to say that those logics have
some extensional contexts made up only of the vocabulary {∧,∨,¬}. Thanks to an
anonymous referee for raising this point.

11 See Humberstone [27,28] and [29, 455] for more on extensionality of connectives.



is one where the necessary equivalence of formulas suffices for necessary equiva-
lence in that context, but the mere equivalence of formulas does not. Following
Williamson [63], we first define an auxiliary concept and then define intensional
contexts.

Definition 3 (Non-hyperintensionality in L, intensionality in L) A for-
mula context (C, p) is non-hyperintensional in L iff for all formulas A and B,

– ⊢L □(A ↔ B) → □(C(A) ↔ C(B)).

A formula context (C, p) is intensional in L iff it is non-hyperintensional in L.
and not extensional in L.

In the last 50 years, interest in intensional pheonomena, and relatedly in inten-
sional contexts, has grown in philosophy and philosophical logic, a trend noted
by Nolan [39], among others. A paradigm example of an intensional context
would be (□p, p) in the logic S5. This is not an extensional context, meaning
that ̸⊢S5 (p ↔ q) → (□p ↔ □q), but it is also not hyperintensional, meaning
that for all A and B, ⊢S5 □(A ↔ B) → □(□A ↔ □B). It is worth noting that
the use of a non-truth-functional connective does not suffice for contexts failing
to be extensional, as shown by Humberstone [27]. While there is surely more to
say about intensional contexts in non-classical logics, further investigation will
be left for future work. Instead, let us finally turn to hyperintensional contexts,
which will be the focus of most of this paper.

A hyperintensional context is one that “draws a distinction between neces-
sarily equivalent” formulas.12 In other words, a hyperintensional context is one
where necessarily equivalent formulas may not necessarily be equivalent in that
context.13 We will define hyperintensionality precisely, modeling our definition
on that of Williamson [63].

Definition 4 (Hyperintensionality in L) A formula context (C, p) is hyper-
intensional in L iff there are formulas A and B such that

– ̸⊢L □(A ↔ B) → □(C(A) ↔ C(B)).

A logic L is hyperintensional iff there is a formula context (C, p) that is hyper-
intensional in L.

We will refer to the conditional, □(A ↔ B) → □(C(A) ↔ C(B)), as the hy-
perintensionality scheme.

Before proceeding, we will make three comments on this definition. First, a
context is hyperintensional in L iff it is not non-hyperintensional in L. Given that
the focus of this paper is on hyperintensionality, it seems worthwhile to define
the concept directly, rather than merely going via another definition. Second,
although we are focused, in this paper, on some logics defined via axiom systems,
the definition of hyperintensionality is given in a presentation-neutral way that

12 Berto and Nolan [4].
13 This is essentially the characterization given by Nolan [39].



applies equally well to logics defined in terms of proof systems, in terms of classes
of frames, or via another method. Third, the definition is a straightforward
generalization of a concept from classically-based modal logic, i.e. modal logics
extending classical logic. As with other concepts moved from a classical setting
to a non-classical one, there may be alternative, non-equivalent definitions that
exhibit different features. This definition, however, seems appropriate since it
uses the primary conditional and biconditional of the logic L. At least for the
logics under discussion in this paper, the defined biconditional is the standard
one, so it seems unlikely that an alternative definition of hyperintenisonality will
offer an improvement.

Next, we will say that a logic M is a sublogic of a logic L iff M ⊆ L. A
consequence of the definitions so far is the following proposition.

Proposition 5 Let M be a sublogic of L. If L is hyperintensional, then so is M.

Proof. Suppose that ̸⊢L □(A ↔ B) → □(C(A) ↔ C(B)), for some A,B, and C.
Since M ⊆ L, ̸⊢M □(A ↔ B) → □(C(A) ↔ C(B)), as desired.

A context being hyperintensional is a failure of logical truth, or provability as
appropriate, so hyperintensionality is preserved downwards to sublogics. This
will be important for our main result. As we will be interested in demonstrating
certain contexts, and logics, are hyperintensional, adopting the strongest logic
will lead to the strongest result.

4 Hyperintensionality

In this section, we will prove some results concerning hyperintensionality for
some modal extensions of the logic R. The definition of hyperintensional con-
texts should be understood as indexed to R, and its modal extensions, with
the displayed conditional and biconditional being those of R. We will explicitly
indicate when different logics are under consideration.

Once we have settled the question of the base logic, there is a further question
concerning which necessity to use in the statement of hyperintensionality. For
a general study of hyperintensionality, care needs to be taken regarding what
modal axioms, if any, should be required to ensure that the hyperintensionality
definition yields satisfactory results. Williamson uses universal necessity, which
in the setting of classical logic is equivalent to the necessity of S5, in stating
his definition.14 The necessity of S5, or rather an S5-type extension of R, would
be a fine necessity for our purposes, but we can obtain stronger results with a
different necessity. A logic being hyperintensional is a matter of the invalidity of
an instance of the hyperintensionality scheme, and, since invalidity is preserved

14 The concept of S5-type necessity exhibits some subtleties in the context of relevant
logics, for which see Standefer [54], and other non-classical logics, for an example of
which see Ono [42]. In the present context, the addition of universal necessity to R
would not result in a relevant logic, so we will not follow Williamson exactly.



from stronger logics down to weaker logics, using stronger modal principles will
give stronger results concerning hyperintensionality.

Our aim will be to show that many plausible modal extensions of R are hy-
perintensional. To that end, we will consider the modal axiom scheme A ↔ □A,
which is known as the TRIV axiom scheme. Let the logic R.TRIV be R with the
addition of the TRIV axiom scheme. While R.TRIV is not a plausible modal logic
for alethic necessity, it will work for our purposes.

To obtain our main result, we first prove a lemma using matrix methods.
A matrix has a set V of semantic values, with a subset of designated values
D ⊆ V , and operations on V for interpreting each connective of the language.
A valuation v is a function from atoms to V that is extending to the whole
language using the operations of the matrix. A valuation v on a matrix is a
counterexample to a formula A iff v(A) ̸∈ D.

Lemma 6 The formula (p ↔ q) → ((p ∧ r) ↔ (q ∧ r)) is not a theorem of R.

Proof. We will use a three-valued matrix. For the set of values, V , we take
{0, 1

2 , 1}, with D = { 1
2 , 1}. The value of complex formulas is computed using the

following tables.

→ 0 1
2 1 ¬

0 1 1 1 1
1
2 0 1

2 1 1
2

1 0 0 1 0

∧ 0 1
2 1

0 0 0 0
1
2 0 1

2
1
2

1 0 1
2 1

∨ 0 1
2 1

0 0 1
2 1

1
2

1
2

1
2 1

1 1 1 1

A valuation v is a countermodel for a formula A iff v(A) = 0, which is to say
that v(A) is not designated.

Every axiom of R is designated on every valuation and the rules preserve
designation.15 By an inductive argument, this implies that every theorem of R
receives a designated value. To show that a formula is not a theorem of R, it
suffices to provide a valuation that assigns it 0. In the case of interest, v(p) = 1,
v(q) = 1, and v(r) = 1

2 will work.16 This valuation gives v(p ↔ q) = 1, while
v((p ∧ r) ↔ (q ∧ r)) = 1

2 . As 1 → 1
2 = 0,

v((p ↔ q) → ((p ∧ r) ↔ (q ∧ r))) = 0,

as desired.

The formula scheme (A ↔ B) → ((A ∧ C) ↔ (B ∧ C)) is not a theorem of R.17

Next, we note a fact about R.TRIV.

Lemma 7 Let (C, p) be a formula context. Then, ⊢R.TRIV C(A) ↔ C(□A).

15 This was shown by Robert Meyer. See Anderson and Belnap [2, 470].
16 This countermodel was found using John Slaney’s program MaGIC. See https:

//users.cecs.anu.edu.au/~jks/magic.html
17 Axioms of a similar form were studied by Routley et al [45, 345] and by Urbas and

Sylvan [60], and these will be discussed more in the next section. Thanks to Andrew
Tedder for drawing my attention to these citations.

https://users.cecs.anu.edu.au/~jks/magic.html
https://users.cecs.anu.edu.au/~jks/magic.html


Proof. The proof is by induction on the construction of C.

With these lemmas in hand, we can turn to our main result.

Theorem 8 The logic R.TRIV is hyperintensional.

Proof. To show that R.TRIV is hyperintensional, we need a formula context
which is hyperintensional. Take the formula context (s ∧ r, s). The formula

□(p ↔ q) → □((p ∧ r) ↔ (q ∧ r))

is not provable in R.TRIV. This is because we can use the previous lemma to
focus on the equivalent

(p ↔ q) → ((p ∧ r) ↔ (q ∧ r)),

which was shown not to be a theorem of R in lemma 6.

Thus, we have demonstrated that R.TRIV is hyperintensional. It is worth noting
that, for similar reasons, (p ∨ r, p) is a hyperintensional context as well. As an
immediate corollary, we have the following result.

Corollary 9 Let L be any sublogic of R.TRIV. Then L is also hyperintensional.

The sublogics of R.TRIV include all the well-known relevant logics, such as T, E,
and B, as well as (multiplicative, additive) linear logic, and further it includes
many of their extensions with well-known modal principles. We can sharpen this
claim, but first we need a lemma.

Lemma 10 Let L be a sublogic of R, and let M be an extension of L with modal
rules and axioms. Suppose every theorem A of M has the feature that removing
all occurrences of □ results in a theorem of R. Then, M is a sublogic of R.TRIV.

Proof. Suppose L is a sublogic of R, and let M be an extension of L with modal
rules and axioms. Suppose every theorem A of M has the feature that removing
all occurrences of □ results in a theorem of R. Let B be a theorem of M, and
let C be the result of removing all occurrences of □. By assumption, C is a
theorem of R. By repeated application of lemma 7, we can insert occurrences of
□, obtaining a theorem of R.TRIV.

As a consequence of the lemma and the preceding corollary, all logics satisfying
the hypotheses will be hyperintensional. As an illustration of what these results
cover, we note that all the relevant modal logics discussed by Fuhrmann [22]
fall within their scope, as do almost all relevant modal logics considered by
Ferenz [17].18

There are modal logics that are not sublogics of TRIV, although the ma-
jority of the philosophically significant ones are sublogics of TRIV. Perhaps the

18 The sole exception from Ferenz [17] is the logic RGL, to be mentioned below.



most prominent modal logics that are not sublogics of TRIV are provability log-
ics, logics that include the axiom □(□A → A) → □A.19 These have not been
studied much in the context of relevant logics, although RGL, a provability logic
extension of R introduced by Mares [33], provides an exception. Although the
above countermodel does not work for Mares’s provability logic, the same invalid
formula demonstrates that the logic is hyperintensional.

Let us consider one further logic that is not a sublogic of R.TRIV. For this,
we recall the three-valued matrix used in the proof of lemma 6. We add to that
matrix an interpretation of □.

□x =

{
1 x = 1
0 else

Let us say that the modal logic RM3U is the set of formulas that have no coun-
terexamples on any valuation on this matrix, writing ⊢RM3U A where A is a
logical truth of RM3U.20

The modal logic RM3U is not a relevant logic, as ⊢RM3U (p ∧ ¬p) → (q ∨ ¬q),
which is a violation of the variable-sharing criterion.21 It also lacks an axiom of
TRIV, as ̸⊢RM3U p → □p. The logic RM3U is not a great candidate for a logic
of alethic necessity, but it contains some logics that are independently inter-
esting. One such logic is the logic of universal necessity over R, presented by
Standefer [54].22 A full definition of this logic would require introducing ternary
relational models and describing their relationship to matrices.23 Rather than
present those details, we will focus on RM3U and demonstrate its hyperinten-
sionality.

Theorem 11 The logic RM3U has hyperintensional contexts.

Proof. We will show that the context (p ∧ r, p) is hyperintensional in RM3U.
Consider the valuation v such that v(p) = v(q) = 1 and v(r) = 1

2 . It follows that
v(□(p ↔ q)) = 1 while v((p ∧ r) ↔ (q ∧ r)) = 1

2 . Since □ 1
2 = 0 it follows that

v(□(p ↔ q) → □((p ∧ r) ↔ (q ∧ r))) = 0.

It then follows that (p ∧ r, p) is hyperintensional in RM3U.

19 See Boolos [9] and Verbrugge [61] for more on provability logics.
20 The name is based on two things. First, RM3 is a standard name for the logic obtained

from this matrix, which is a three-valued extension of the logic RM, discussed in
Entailment volume 1 [2, §29], as well as elsewhere. Second, the U is because of the
extension with the modal operator related to universal necessity discussed below.

21 See the discussion of Anderson and Belnap [2, 393ff.] or Øgaard [41].
22 See Standefer [52] for additional discussion.
23 See Restall [44, ch. 11] for a good introduction to ternary relational models. For the

connections between ternary relational models, or rather frames, and matrices, the
interested reader should consult Relevant Logics and their Rivals vol. II [10, ch. 9]
or Standefer [58, ch. 5].



RM3U is hyperintensional, and it follows that all sublogics of RM3U are hyper-
intensional as well.24 The logic RM3U falls outside the scope of theorem 8, so we
can see that hyperintensionality arises for modal logics that do not satisfy the
variable-sharing criterion, which we will also see in the next section with HYPE.
For other modal logics that are not sublogics of R.TRIV, there is a lingering
question of whether they are hyperintensional or not. In section §6, we will show
that many of those modal logics are hyperintensional, provided that they satisfy
the variable-sharing criterion.

With theorem 8, we can specify a sense in which the base relevant logics are
hyperintensional. This requires some additional background, and for the remain-
der of the section, we will remove □ from the language. Anderson and Belnap
showed how to define logical necessity in their logic E, a close relative of R. An-
derson and Belnap define ■A as (A → A) → A.25 This can be understood as
saying that logic implies A, which is a fair definition of logical necessity. In the
context of E, ■, so defined, has an S4-type logic, and in the context of weaker rel-
evant logics, it obeys weaker principles. In the context of R, however, the defined
connective ■ is trivial in the sense that A ↔ ■A is a logical truth. Therefore, the
context (p ∧ r, p) is hyperintensional, taking ■ to be the necessity of the hyper-
intsionality scheme, which is to say that ̸⊢R ■(p ↔ q) → ■((p ∧ r) ↔ (q ∧ r)).

The defined necessity, ■, in the logic R obeys the TRIV principles. For weaker
base logics, the defined necessity is weaker. For example, the defined necessity
in the logic E does not obey the TRIV principles, but it does obey ■A → ■■A
and ■A → A, among others. Using the defined necessity, we can view relevant
logics as themselves (relevant) modal logics and use the defined necessity in
the definition of hyperintensionality.26 In this sense, R and its sublogics are
hyperintensional. In particular, Anderson and Belnap’s logic E, with its defined
logical necessity operator, is hyperintensional. Since E with its defined necessity
is simply E, it is natural to say that E is hyperintensional on its own. The
sublogics of R build in hyperintensionality with respect to their defined necessity
operators. Of course, there are other necessity operators one might define using
the resources of the base logic. For many of these, the sublogics of R will be
hyperintensional in much the same way.

With the main results on hyperintensionality proven, we will turn to a short
discussion of extensionality, in light of the results above.

24 Standefer [53, 246] claimed that the logic of universal necessity did not have hyper-
intensional contexts. Theorem 11 demonstrates that this was incorrect.

25 One can obtain an alternative definition by using the Ackermann truth constant, t,
which can be given an informal gloss as the conjunction of all logical truths. Using
the Ackermann constant, ■A can be defined as t → A. The equivalence of the two
definitions is demonstrated by Mares and Standefer [36], among others.

26 Viewing E as incorporating a modal element in its conditional was a point emphasized
by Anderson and Belnap [2], as can be seen from the subtitle to Entailment, namely
“The logic of relevance and necessity.”



5 Extensionality and some limitative results

We will begin by observing one additional corollary of lemma 6.

Corollary 12 There are contexts that fail to be extensional in R.

Proof. By lemma 6, (s ∧ r, s) fails to be extensional in R.

For similar reasons, (s∨r, s) also fails to be extensional in R. While it is perhaps
not surprising that R, and all of its sublogics, contain non-extensional contexts,
it is worth noting that the particular non-extensional contexts provided involve
only conjunction or only disjunction, both often thought of as extensional.27

In the context of R, at least, Williamson’s definition of extensional context,
with ⊃ and ≡, would say that (s ∧ r, s) is an extensional context, an (⊃,≡)-
extensional context in the nomenclature of section 3. This is not the case for
many of the weaker relevant logics, a fact which is a consequence of the results
of Slaney [50]. Many of the weaker relevant logics do not have any theorems that
lack implications, and the (⊃,≡)-extensionality scheme does not add any arrows
not contained in A, B, or C. Therefore, in such logics, (⊃,≡)-extensionality will
not be an interesting or useful concept.

One might wonder whether there is an extension of R, or any of its sublogics,
in which ∧ and ∨ generate extensional contexts. We can provide a negative
answer to this. Let us say that B.Ext is the logic obtained by B by adding the
axioms

(Ext1) (A ↔ B) → ((A ∧ C) ↔ (B ∧ C)), and
(Ext2) (A ↔ B) → ((A ∨ C) ↔ (B ∨ C)).

These axioms may remind the reader of the (Factor) axioms studied by Urbas
and Sylvan [60]:

(F1) (A → B) → ((A ∧ C) → (B ∧ C)), and
(F2) (A → B) → ((A ∨ C) → (B ∨ C)).

The (Factor) axioms are known to cause problems for relevant logics, in particular
leading to violations of variable-sharing. A similar issue arises with the weaker
extensionality axioms. We begin by proving a lemma.

Lemma 13 Let (D, p) be a context built from the vocabulary {∧,∨} and con-
taining an occurrence of p. Then (A ↔ B) → (D(A) ↔ D(B)) is derivable in
B.Ext.

Proof. The proof is by induction on the construction of D. If D is the atom p,
then the result is immediate.

Suppose D is E ∧ F . There are two subcases: p occurs in both E and F
or p occurs in only one. For the first subcase, by the inductive hypothesis, both
(A ↔ B) → (E(A) ↔ E(B)) and (A ↔ B) → (F (A) ↔ F (B)) are derivable. By

27 Cf. Gabbay [23] corollary 21.



some straightforward reasoning, it follows that (A ↔ B) → ((E(A) ∧ F (A)) ↔
(E(B) ∧ F (B))) is derivable.

For the second subcase, without loss of generality, we can assume that p
occurs only in E. By the inductive hypothesis, (A ↔ B) → (E(A) ↔ E(B)) is
derivable. Using (Ext1), it follows that (A ↔ B) → ((E(A)∧F ) ↔ (E(B)∧F ))
is derivable.

The case where D is E∨F is similar, except that (Ext2) is used in the second
subcase.

As a corollary, we have the following.

Corollary 14 The formula (p ↔ p) → (((p∧ q)∨ q) ↔ ((p∧ q)∨ q)) is derivable
in B.Ext.

As a lemma, we will note that absorption is derivable in B.

Lemma 15 In B, ((A ∧B) ∨B) ↔ B is derivable.

Combining this lemma with the preceding corollary gives the desired negative
result.

Corollary 16 The logic B.Ext contains violations of variable-sharing.

Proof. Both (p ↔ p) → (((p ∧ q) ∨ q) ↔ ((p ∧ q) ∨ q)) and ((p ∧ q) ∨ q) ↔ q are
derivable. Using some simple transitivity moves, it follows that (p ↔ p) → (q ↔
q) is derivable.

As can be seen from the proofs, this result used very little as far as logical re-
sources. Therefore, the hope of obtaining extensions of the standard relevant
logics in which {∧,∨} generate extensional contexts is unsatisfiable. Although
the extensionality axioms, (Ext1) and (Ext2), are weaker than the (Factor) ax-
ioms, (F1) and (F2), they give rise to what are, essentially, the same problems.
Let us turn to the other connectives in relevant logics.

There is another binary connective, fusion (◦), that is often considered in
relevant logics.28 The set of connectives {→,¬, ◦} is sometimes informally de-
scribed as intensional, or non-extensional. If we consider the contexts built from
these connectives, we find that they are all extensional in R.

Proposition 17 Let (C, p) be a context built from atoms and only the connec-
tives →,¬, and ◦. Then, if p occurs in C, (C, p) is extensional in R.

Proof. The connective ◦ is definable in R as A ◦B =Df ¬(A → ¬B). The result
is then proved by induction on structure of C, which is straightforward using ax-
ioms (8) and (11). The inductive hypothesis is that ⊢R (A ↔ B) → (D(A) ↔ D(B)),
for less complex contexts (D, p).

For the conditional case, the context is (D → E, p). As (D(A) → E(A)) →
(D(A) → E(A)) is provable by axiom (1), we can prove

(A ↔ B) → ((A ↔ B) → ((D(A) → E(A)) → (D(B) → E(B))))

28 See Read [43] for a sustained discussion and defense of fusion.



with the two appeals to the inductive hypothesis and some simple transitivity
moves available in R. An appeal to axiom (11) then yields half of the desired
result. The other half is obtained similarly.

For the negation cases, we use (8) and the desired result follows immediately.

Without the caveat that the p occurs in C, there can be a failure of extension-
ality for reasons of variable-sharing. Let C be r. Then (r, p) will be a failure of
extensionality, as (p ↔ q) → (r ↔ r) would violate variable-sharing and so is
not a theorem.

For logics that lack axioms (8), (10), or (11), the analog of proposition 17
may fail. In weaker logics, some contexts built from the connectives {→,¬, ◦}
can fail to be extensional. All the standard relevant logics include the rule form
of axiom (9) used in the proof, so we will not consider dropping it here.

Let us look at some examples of failures of extensionality in logics lacking
axioms (8), (10), or (11). We start with the logic RW.29

Proposition 18 In RW, the context (r → r, r) is not extensional.

Proof. We leave it to the reader to find a countermodel using MaGIC.

Next we will consider the logic T.30 In T, fusion is not definable in terms of
negation and conditional. Contexts built from fusion fail to be extensional.

Proposition 19 In T, (p ◦ r, p) is not extensional.

Proof. We leave it to the reader to find a countermodel using MaGIC.

Although contexts built from fusion can fail to be extensional, in T, many con-
texts built from the vocabulary {¬,→} are still extensional, as in R.

Proposition 20 In T, all contexts (C, p) constructed from the vocabulary {→
,¬} and in which p occurs in C are extensional.

Proof. The negation and conditional cases from the proof from proposition 17
can be reproduced here, omitting fusion.

It is worth looking at an example of a failure of extensionality for contexts built
from negation that can be found in the logic B.31 Some formula contexts in
the basic vocabulary fail to be extensional in B, beyond the examples provided
above.

Lemma 21 In B, the formula context (¬p, p) is not extensional.

29 RW can be obtained from the axiomatization of R by dropping axiom (11).
30 The logic T can be obtained from the axiomatization of R by removing (10) and

adding (A → ¬A) → ¬A.
31 The logic B can be obtained from R by dropping axioms (8)–(11) and adding the

rules A → ¬B ⇒ B → ¬A, A → B ⇒ (C → A) → (C → B), and A → B ⇒ (B →
C) → (A → C).



Proof. In B,

(p ↔ q) → (¬p ↔ ¬q)

is invalid. We can adapt the matrix from the proof of lemma 6 to show this. We
change the set of designated values to {1}, replace the conditional table with

→ 0 1
2 1

0 1 1 1
1
2 0 1 1
1 0 1

2 1

and all valuations on the resulting matrix assign all the theorems of B designated
values.32 The valuation v where v(p) = 1 and v(q) = 1

2 is a counterexample to
the target formula.

To obtain HYPE, or at least its logical truths, from R, we add A → (B → A)
and trade axiom (8) for its rule form, A → ¬B ⇒ B → ¬A. It follows that
we can obtain HYPE by adding some axioms to B. B shares with HYPE the
feature of having contraposition as a rule but, crucially, not as an axiom, which
results in the failure of the pertinent instance of the extensionality scheme above.
In fact, this example extends to HYPE as well. This provides an example of
hyperintensionality in B.TRIV, as the context (¬p, p) is also hyperintensional in
B.TRIV, and so in all sublogics. A similar point holds for HYPE, and in fact, the
same matrix demonstrates the failure of extensionality. Thus, HYPE, and any
sublogic of HYPE.TRIV also exhibits hyperintensionality in the same sense as
relevant logics.

We have shown that it is not possible to extend a relevant logic at least as
strong as B so that contexts built from {∧,∨} are extensional while maintaining
variable-sharing. One might wonder whether it is possible to extend R, or indeed
any relevant logic, with a necessity operator where the connectives {∧,∨} do not
generate hyperintensional contexts while maintaining variable-sharing. We will
now show that this is not possible.

For our result, we will add the axioms

(Int1) □(A ↔ B) → □((A ∧ C) ↔ (B ∧ C)), and

(Int2) □(A ↔ B) → □((A ∨ C) ↔ (B ∨ C))

as well as the rule

– (Cong), A ↔ B ⇒ □A ↔ □B,

to B. Let us call this logic B.Int.

Lemma 22 In B.Int, if (D, p) is any context in the vocabulary {∧,∨} in which
p occurs in D, then □(A ↔ B) → □(D(A) ↔ D(B)) is derivable.

32 This countermodel was found using John Slaney’s program MaGIC.



Proof. The proof is by induction on the construction of D. For the base case,
□(A ↔ B) → □(A ↔ B) is an axiom

Suppose D is of the form E ∧ F . Without loss of generality, suppose that p
occurs in E. By the inductive hypothesis, □(A ↔ B) → □(E(A) ↔ E(B)) is
derivable. An instance of (Int1) is □(E(A) ↔ E(B)) → □((E(A)∧F ) ↔ (E(A)∧
F )). By simple transitivity moves, □(A ↔ B) → □((E(A) ∧ F ) ↔ (E(B) ∧ F ))
is derivable.

The case where D is E ∨ F is similar.

We then use the fact recorded in lemma 15 to obtain the following.

Lemma 23 In B.Int, □
(
((A ∧ B) ∨ B) ↔ ((A ∧ B) ∨ B)

)
↔ □(B ↔ B) is

derivable.

Proof. As noted in lemma 15, ((A ∧B) ∨B) ↔ B is derivable. By some simple
transitivity moves, it then follows from the derivability of (B ↔ B) ↔ (B ↔ B)

that
(
((A∧B)∨B) ↔ ((A∧B)∨B)

)
↔ (B ↔ B) is derivable. One application

of (Cong) then results in the desired formula.

The previous lemmas suffice for the following corollary.

Corollary 24 There are violations of variable-sharing in B.Int.

Proof. By lemma 22, □(p ↔ p) → □(((p ∧ q) ∨ q) ↔ ((p ∧ q) ∨ q)) is derivable.
Using simple transitivity moves with lemma 23, we obtain □(p ↔ p) → □(q ↔
q).

As with the variable-sharing violation from the (Ext1) and (Ext2) axioms, the
proofs did not require much from the base logic. The modal resources required
are fairly minimal as well, using only the rule (Cong). In fact, most standard
relevant modal logics use the stronger rule (Mono), A → B ⇒ □A → □B.
Therefore, avoiding hyperintensional contexts in the vocabulary {∧,∨} while still
satisfying the variable-sharing criterion would require severe cuts to the logic.
Given that satisfying the variable-sharing criterion is a necessary condition for
being a relevant logic, a wide array of modal extensions of standard relevant
logics will contain hyperintensional contexts.

With these results in hand, let us turn to some further concepts for classifying
formula contexts and some discussion.

6 Discussion

In this section, we will begin by discussing some further concepts for classifying
formula contexts.

Odintsov andWansing [40] adopt an alternative notion of hyperintensionality,
using self-extensionality,33 also known as congruentiality, 34 which they argue is

33 See Wójcicki [64, 342], who uses the term ‘selfextensional’, Font [19, ch. 7], Avron [3],
for example. Thanks to Rohan French and Andrew Tedder for references.

34 See Humberstone [30, 19], among others.



closer to the suggestions of Cresswell [12].35 We will call the concept they use
⊢L-congruentiality, where ⊢L is the consequence relation of L.36

Definition 25 (⊢L-congruentiality) A formula context (C, p) is ⊢L-congruential
iff for all formulas A and B,

– if A ⊢L B and B ⊢L A, then C(A) ⊢L C(B) and C(B) ⊢L C(A).

A logic L is ⊢L-congruential iff all formula contexts are ⊢L-congruential.

A context is hyperintensional, in this sense, iff it is not ⊢L-congruential. The idea
behind this concept is that the phenomenon of hyperintensionality is concerned
with distinguishing logically equivalent formulas. We can adapt their definition
to the present setting, defining ↔-congruentiality, following Humberstone [29,
484-485].37

Definition 26 (↔-congruentiality) A formula context (C, p) is ↔-congruential
(in L) iff for all formulas A and B,

– if ⊢L A ↔ B, then ⊢L C(A) ↔ C(B).

A logic L is ↔-congruential iff all formula contexts are congruential in L.

Relevant logics and their usual modal extensions are ↔-congruential, although
there are modal extensions which are not.38 We can make this claim more precise.

Theorem 27 Let L be any sublogic of R extending B that is closed under the
rules of B. Let L.Cong be L extended by the rule (Cong). Then every formula
context in the vocabulary {¬,→,∧,∨,□} is ↔-congruential in L.Cong.

Proof. The proof is by induction on the complexity of the context C. The base
cases are immediate, and the cases for the non-modal connectives are handled
by the rules and axioms of B. The case where C has the form □D is handled by
the rule (Cong).

35 In this paper, we do not address the interpretive point concerning Cresswell’s article.
36 We have been discussing logics as sets of logical truths, or theorems, but discussion of

Odintsov and Wansing’s proposal requires using consequence relations. A single set
of logical truths can be associated with multiple consequence relations, so some care
must be taken in moving from L viewed as a set of logical truths to a consequence
relation.

37 This adaptation is not uncommon, for which see, e.g., Williamson [63, 313], but
it forfeits a potential virtue of ⊢L-congruentiality, namely being free of displayed
connectives and instead involving only the salient consequence relation, rather than
also involving various connectives. There is no apparent way to adapt the definition
of hyperintensionality, in the sense from §3, to be free of connectives, as it is not
clear how one would maintain the modal element appropriately.

38 See Savić and Studer [46] and Standefer [55] for examples.



In particular, the context (p ∧ r, p) is ↔-congruential while also being hyperin-
tensional.

While Odintsov and Wansing think that failure of ⊢L-congruentiality is the
proper concept for formalizing the phenomenon of hyperintensionality, it is worth
distinguishing failures of ⊢L-congruentiality, or failures of ↔-congruentiality, and
hyperintensionality, as defined in §3, for two reasons. First, hyperintensionality
builds in an explicit modal element that is absent in both definitions of congruen-
tiality in the sense that the former, but not the latter requires a modal operator
be used in its definition. It is not clear how one would add a modal element
to ⊢L-congruentiality, and there are apparently different options for inserting
modalities into ↔-congruentiality.

The second reason is that once one is working with a modal logic for which
the rule (Nec), A ⇒ □A, fails, the relationship between hyperintensionality and
failures of congruentiality becomes more complex, as noted by Williamson [63].
This is particularly salient in the present context, because (Nec) fails in many
relevant modal logics, and it is not required by the relevant analogs of Kripke
models.39

The relationship between hyperintensionality and failures of congruentiality
becomes more complex with certain extensions of the language as well. With
certain extensions of the language, some contexts can fail to be congruential but
also be non-hyperintensional. As noted by Williamson [63, 315], the addition of
an actuality operator A to the language can render (□p, p) a non-congruential yet
non-hyperintensional context.40 This example suggests that as the language is
enriched, the relationship between non-congruentiality and hyperintensionality
will become more complex, as they track slightly different features of the logics.

Presenting congruentiality and hyperintensionality as rivals is, however, ar-
tificial. One can use both concepts for classifying formula contexts, and using
one does not preclude using the other. They are both interesting and important.
It is, we think, worth distinguishing them, and they could potentially be put to
different logical uses.

It is worth pointing out a feature of relevant logics that is, in some ways,
similar in spirit to hyperintensionality. Classical logic is monothetic in the sense
that for any two logical truths A and B, A ↔ B is a logical truth.41 From the
point of view of classical logic, there is only a single logical truth. HYPE is also
monothetic, replacing the classical biconditional with the biconditional of HYPE,
and similarly for intuitionistic logic. Relevant logics are polythetic meaning that
there are non-equivalent logical truths, that is, there are logical truths A and B

39 See Fuhrmann [22] or Standefer [58] for more details.
40 To elaborate, Crossley and Humberstone [13] distinguish two kinds of validity when

actuality is in the language, real world validity and general. One kind, real world
validity, renders AB ↔ B valid. Despite this, □Aq ↔ □q is not valid, whence (□p, p)
is non-congruential. Verifying non-hyperintensionality will be left to the reader.

For discussion of real world and general validity, see Zalta [65], Hanson [24], Zalta
and Nelson [38], and French [20], among others.

41 See Humberstone [29, 231].



such that A ↔ B is not a logical truth.42 As an example, we note that ⊢R p → p
and ⊢R q → q, but ̸⊢R (p → p) ↔ (q → q). In this sense, relevant logics permit
one to draw distinctions between logical truths. By contrast, any logic that obeys
the weakening rule, A ⇒ B → A, will be monothetic.

There is a special case of being polythetic that is worth bringing out. Let us
say that a formula A is a classical tautology in the vocabulary {¬,∧,∨} iff there
is a formula C whose connectives are all from the set {¬,∧,∨} such that C is
a classical tautology and A can be obtained from C by substituting formulas
for atoms. Consider two formulas A and B that are classical tautologies in the
vocabulary {¬,∧,∨}. In R, there are classical tautologies that are theorems but
not equivalent. For example, ⊢R p ∨ ¬p and ⊢R q ∨ ¬q, but those two instances of
excluded middle are not equivalent, as ̸⊢R (p ∨ ¬p) ↔ (q ∨ ¬q). This last bicon-
ditional must fail, on pain of violating variable-sharing. Thus even in the relevant
logics in which all classical tautologies are theorems, such as R, relevant logics
can draw distinctions among those tautologies.43 This marks an important dif-
ference with, say, HYPE. In HYPE one can distinguish classical tautologies, such
as p∨¬p and q∨¬q, since they are not theorems of HYPE. Any two formulas that
are theorems of HYPE are also equivalent in HYPE. In contrast, relevant logics
can draw distinctions among classical tautologies, even when those tautologies
are theorems.

Drawing distinctions among valid formulas and classical tautologies carries
over to modal extensions of the relevant logics as well. The logics can draw
distinctions among classical modal logical truths, including those that have been
necessitated. One can have an S5-type extension of R that still distinguishes
□(p∨¬p) and □(q ∨¬q) while having both as theorems. Just as different logical
truths may not imply each other, different necessary logical truths may not
imply each other either. While this feature is different from hyperintensionality
and (failures of) congruentiality, it formalizes a similar idea, namely that of
drawing distinctions among necessary or logical truths.

The results of this paper show that almost all the common modal extensions
of relevant logics have hyperintensional contexts. This result extends to HYPE,
although the range of such contexts appears more limited there than for R. As
one weakens the logic, the range of hyperintensional contexts grows, a feature
that extends to HYPE and other substructural logics as well. Hyperintensionality
is of interest in a wide range of philosophical applications of logic, such as logics
of belief and epistemic logics. In epistemic logics, we think of ‘□’ as represent-
ing knowledge, so that ‘□p’ should be understood as saying ‘the agent knows
p’ and in doxastic logics ‘□p’ should be understood as saying ‘the agent be-

42 This point was also made by Standefer [51], albeit in a discussion of justification
logics.

43 There are many standard relevant logics in which classical tautologies in the vocab-
ulary {¬,∧,∨} are not theorems. B is an example of such, but one does not have to
weaken the logic that much for examples. See Slaney [50] for discussion.



lieves p’.44 The most common modal principles for doxastic and epistemic logics
are consequences of the TRIV principles. This means that adding the standard
principles for doxastic and epistemic logics to, say, R will result in a sublogic
of R.TRIV. This, in turn, means that one of the hyperintensionality result will
straightforwardly apply to these logics.

In the context of epistemic logic, a context being hyperintensional means
that an agent’s knowledge will not be closed under known equivalence in the
following sense. The agent knowing that p ↔ q need not imply that they know
(p∧ r) ↔ (q ∧ r), to use the example from theorem 8. If one adopts a base logic
weaker than R, one will have more examples where knowing one equivalence does
not lead to knowing others, such as knowing p ↔ q but not knowing ¬p ↔ ¬q.45

Such failures open up possibilities for representing agents that are limited in
different ways in how they can use their knowledge. It is natural, in this context,
to represent an agent’s knowledge as a logical theory, which is a set of formulas
closed under provable implications and adjunction. More carefully, a theory in
the logic L is a set X of formulas such that (i) if ⊢L A → B and A ∈ X, then
B ∈ X and (ii) if A ∈ X and B ∈ X, then A ∧ B ∈ X. A context being
hyperintensional means that that instance of the hyperintensionality scheme is
not provable. This in turn gives rise to theories containing the antecedent but
not the consequent, representing agents whose knowledge is not closed under
substitutions of certain known equivalences.46 Additionally, there will be theories
in which the agent’s knowledge will be closed under some equivalences, but not
others. As an example, there will be a theory in which the agent knows p ↔ q
but not (p∧ r) ↔ (q ∧ r) and the agent knows both p ↔ s and (p∧ r) ↔ (s∧ r),
which is to say □(p ↔ q),□(p ↔ s), and □((p∧r) ↔ (s∧r)) are all in the theory
but □((p ∧ r) ↔ (q ∧ r)) is not. While an agent’s knowledge will still be closed
under provable implications and equivalences, there will be a lot of flexibility in
representing an agent’s knowledge of true, or merely assumed true, equivalences.

One direction for future work that would be useful in the development of the
epistemic logic application suggested above is precisely characterizing the range
of hyperintensional contexts in the different relevant and substructural logics.
This would be useful in better understanding the ways in which non-classical
epistemic logics avoid, or fail to avoid, problems of logical omniscience.47

The hyperintensionality discussed above is the sort that arises naturally in
the logics under consideration. It arises in an axiomatic setting from adding a

44 See Meyer and van der Hoek [37], van Ditmarsch et al. [14], or Rendsvig et al. [26]
for an introduction to epistemic logic.

45 Reasons why some of these equivalences fail might be obtained from recent work
on topics and topic-transforming operators, such as that of Berto [6], Ferguson and
Logan [18], and Tedder [59].

46 Given the results concerning ↔-congruentiality at the start of this section, we want
to emphasize these are not provable equivalences.

47 See, for example, Sedlár [47,48], Standefer, Shear, and French [21], and Ferenz [16],
among others, for some discussion of logical omniscience in non-classical settings.
For a contrasting recent discussion of omniscience in the setting of classical logic,
see Hawke, Özgün, and Berto [25].



selection of more or less standard axioms to a base relevant logic. It arises natu-
rally in the context of models as well, if one uses the straightforward approach of
adding a binary modal accessibility relation to a model for a relevant logic. This
is all to say that the hyperintensionality described above arises without the need
for any additional logical machinery or any formal “funny business.” Making the
bog standard extensions of relevant logics, or indeed a range of substructural log-
ics, with modal operators will result in hyperintensional contexts. One can, of
course, appeal to various modeling techniques used to obtain hyperintensional
contexts over classical logic to obtain such contexts in relevant logics.48 These
modeling techniques will likely interact with the natural hyperintensionality of
relevant logics in interesting ways.

To summarize, relevant logics are hyperintensional, in at least one impor-
tant sense, when considering many natural extensions with necessity operators.
Related to the hyperintensional contexts, there are failures of extensionality
for relevant logics, and the range of non-extensionality and hyperintensionality
grows as one weakens the logic. Relevant logics and their modal extensions are,
generally, congruential, so they are not hyperintensional in the sense preferred by
Odintsov and Wansing. Nonetheless, we do agree with Odintsov and Wansing’s
closing suggestion to study non-self-extensional, or non-congruential, operators,
as non-classical logics likely have much to contribute areas in which they are
used. Despite being congruential, relevant logics are polythetic, which allows
them to draw distinctions among logical truths in ways reminiscent of hyperin-
tensionality. Finally, we suggest that it would be worth exploring the use of this
hypreintensionality in the context of epistemic and doxastic logics, as there is
general interest in the phenomenon of hyperintensionality in those areas.
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64. Wójcicki, R.: Theory of Logical Calculi: Basic Theory of Consequence Operations.
Dordrecht, Boston and London: Kluwer Academic Publishers (1988) 15

65. Zalta, E.N.: Logical and analytic truths that are not necessary. The Journal of
Philosophy 85(2), 57–74 (1988). https://doi.org/10.2307/2026992 17

https://doi.org/10.1093/logcom/exu034
https://doi.org/10.1093/logcom/exu034
https://doi.org/10.1093/logcom/exu034
https://doi.org/10.1093/logcom/exu034
https://doi.org/10.1007/s11229-018-02076-7
https://doi.org/10.1007/s11229-018-02076-7
https://doi.org/10.1007/BF00935747
https://doi.org/10.1007/BF00935747
https://doi.org/10.1093/jigpal/jzz018
https://doi.org/10.1093/jigpal/jzz018
https://doi.org/10.1007/s10992-022-09655-7
https://doi.org/10.1007/s10992-022-09655-7
https://doi.org/10.1007/978-3-031-45558-2\_18
https://doi.org/10.1007/978-3-031-45558-2_18
https://doi.org/10.12775/LLP.2022.011
https://doi.org/10.12775/LLP.2022.011
https://doi.org/10.1111/phc3.12965
https://doi.org/10.1111/phc3.12965
https://doi.org/10.1007/bf00370163
https://doi.org/10.1007/bf00370163
https://doi.org/10.1007/bf00370163
https://doi.org/10.1007/bf00370163
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.1111/j.1533-6077.2006.00116.x
https://doi.org/10.2307/2026992
https://doi.org/10.2307/2026992

	On the hyperintensionality of relevant logics and some of their rivals

