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Our Aim

To introduce proof theory, with a focus in its
applications in philosophy, linguistics and

computer science.
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Our Aim for Today

Examine the behaviour of quantifiers and identity
from the perspective of proof theory.
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Today's Plan

First-Order Predicate Logic

Free Logic

Quantified Modal Logic

Other Topics
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first-order
predicate logic



Quantifier Derivations

Fa � Fa
[∀L]

∀xFx � Fa

Ga �Ga
[∀L]

∀xGx �Ga
[∧R]

∀xFx, ∀xGx � Fa∧Ga
[∧L]

∀xFx∧ ∀xGx � Fa∧Ga
[∀R]

∀xFx∧ ∀xGx � ∀x(Fx∧Gx)
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Quantifier Derivations

Fa � Fa
[∃R]

Fa � ∃xFx
Ga �Ga

[∃R]
Ga � ∃xGx

[∨L]
Fa∨Ga � ∃xFx, ∃xGx

[∨R]
Fa∨Ga � ∃xFx∨ ∃xGx

[∃L]
∃x(Fx∨Gx) � ∃xFx∨ ∃xGx
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Quantifier Derivations

Fa � Fa Ga �Ga
[∨L]

Fa∨Ga � Fa,Ga
[∀L]

∀x(Fx∨Gx) � Fa,Ga
[∃R]

∀x(Fx∨Gx) � Fa, ∃xGx
[∀R]

∀x(Fx∨Gx) � ∀xFx, ∃xGx
[∨R]

∀x(Fx∨Gx) � ∀xFx∨ ∃xGx
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Quantifier Rules

X,A(t) � Y
(any t) [∀L]

X, ∀xA(x) � Y

X �A(n), Y
(n fresh) [∀R]

X � ∀xA(x), Y

X,A(n) � Y
(n fresh) [∃L]

X,∃xA(x) � Y

X �A(t), Y
(any t) [∃R]

X � ∃xA(x), Y

In [∀R] and [∃L], the condition that n is fresh means that
n is an eigenvariable, not occurring in X and Y.

Greg Restall and Shawn Standefer Proof Theory:, Logical and Philosophical Aspects 9 of 47



What is an eigenvariable?

An eigenvariable is a singular term n

that is inferentially general.

That is, if π(n) is a derivation of X(n) � Y(n),
then for any term t, π(t) is a derivation of X(t) � Y(t)

(where we have replaced n by t through all the ancestors
of each n occurring in X(n) � Y(n) through π(n).)
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Isn't every term inferentially general?

▶ Function terms aren’t.
We can prove (∃x)(fx = fn), but not (∃x)(fx = t) for arbitrary t.

▶ In sequent presentations of theories, constants can be inferentially
specific. For example, in PA we can prove (∀x)(0 ̸= x ′) but not
(∀x)(t ̸= x ′).
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The Point of Inferential Generality: Eliminating Cut

... δl(n)

X �A(n), Y
[∀R]

X � ∀xA(x), Y

... δr

X,A(t) � Y
[∀L]

X,∀xA(x) � Y
[Cut]

X � Y

We need to transform δl(n) into a proof
of X � A(t), Y in order to simplify the Cut.

... δl(t)

X �A(t), Y

... δr

X,A(t) � Y
[Cut]

X � Y
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free logic



Non-Denoting Terms

1

0
lim
x→0

sin x

x

∞∑
n=0

f(n)

Pegasus

It is difficult to eliminate non-denoting terms as a matter of syntax.

(∀x)(x < 0∨ x = 0∨ x > 0) ̸� (1
0
< 0∨ 1

0
= 0∨ 1

0
> 0)

How can we modify the quantifier rules
to allow for non-denoting terms?
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Pro and Con attitudes to Terms

To rule a term in is to take it as suitable
to substitute into a quantifier,
i.e., to take the term to denote.

To rule a term out is to take it as unsuitable
to substitute into a quantifier,

i.e., to take the term to not denote.

We add terms to the lhs and rhs of sequents X � Y.
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Structural Rules remain as before

⋆ � ⋆ [Id]

X � Y
[KL]

X, ⋆ � Y
X � Y

[KR]
X � ⋆, Y

X, ⋆, ⋆ � Y
[WL]

X, ⋆ � Y

X � ⋆, ⋆, Y
[WR]

X � ⋆, Y

X � ⋆, Y X, ⋆ � Y
[Cut]

X � Y

Here ⋆ is either a sentence or a term.
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ModifiedQuantifier Rules

X,A(t) � Y X � t, Y
(any t) [∀L]

X, ∀xA(x) � Y

X,n �A(n), Y
(n fresh) [∀R]

X � ∀xA(x), Y

X, n,A(n) � Y
(n fresh) [∃L]

X, ∃xA(x) � Y

X �A(t), Y X � t, Y
(any t) [∃R]

X � ∃xA(x), Y

In [∀R] and [∃L], the condition that n is fresh means that
n is an eigenvariable, not occurring in X and Y.
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MakingDenotation Explicit

X, t � Y
[↓L]

X, t↓ � Y

X � t, Y
[↓R]

X � t↓, Y
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Example Derivations

Fn, n � Fn Gn �Gn
[⊃L]

Fn ⊃ Gn,n, Fn �Gn Fn ⊃ Gn,n, Fn � n
[∀L]

∀x(Fx ⊃ Gx), n, Fn �Gn ∀x(Fx ⊃ Gx), n, Fn � n
[∃R]

∀x(Fx ⊃ Gx), n, Fn � ∃xGx
[∃L]

∀x(Fx ⊃ Gx), ∃xFx � ∃xGx
[⊃R]

∀x(Fx ⊃ Gx) � ∃xFx ⊃ ∃xGx
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Example Derivations

Ft � Ft t � t
[∀L]

∀xFx, t � Ft
[↓L]

∀xFx, t↓ � Ft
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Definedness Logic

S OLOMON FEFERMAN * 

DEFINEDNESS 

ABSTRACT. Questions of definedness are ubiquitous in mathematics. Informally, these 
involve reasoning about expressions which may or may not have a value. This paper 
surveys work on logics in which such reasoning can be carried out directly, especially in 
computational contexts. It begins with a general logic of "partial terms", continues with 
partial combinatory and lambda calculi, and concludes with an expressively rich theory of 
partial functions and polymorphic types, where termination of functional programs can be 
established in a natural way. 

1. WHY LOGICS OF DEFINEDNESS? 

Questions of definedness are ubiquitous in mathematics; they are to be 
distinguished from the equally ubiquitous questions of existence. I do not 
mean by the latter, (external) metaphysical questions about the nature and 
existence of mathematical objects, but rather (internal) mathematical ques- 
tions such as whether there exist infinitely many twin primes or whether 
there exist any zeros of the Riemann zeta function in the critical strip off the 
line x = 1/2. Questions of definedness, on the other hand, have to do with 
whether some mathematical expression has a value, or "exists", according 
to some explanation of how it is to be evaluated, if at all. Answers to 
such questions require a definite semantic context. In algebra, for exam- 
ple, the definedness of v /~  - 4ac is sensitive to whether we are working 
in integers, rationals, reals or complex numbers. Much of the conceptual 
progress in mathematics can be laid to wrestling with awkward problems 
of undefinedness or ambiguity of definedness in some number system or 
space. 

Questions of definedness are particularly ubiquitous in analysis: in daily 
practice one deals regularly with expressions such as 

OC'  (DO O 0  . 

liman, E a ~ , E a ~ x  ~, E a ~  ~ ,  
n ---+ (:X) 

n=O n=O n = -  oz 

ja b 
l im  f (x ) ,  f ' (x ) ,  f(x)dx 

Erkenntnis 43: 295-320, 1995. 
© 1996 Kluwer Academic Publishers. Printed in the Netherlands. 

Erkenntnis 43: 295–320, 1995.
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Definedness, function terms and predicates

ti, X � Y
[fL]

f(t1, . . . , tn), X � Y

ti, X � Y
[FL]

Ft1 · · · tn, X � Y
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Models

A model for the logic DL is a structure M consisting of
1. A domain D.
2. An n-ary predicate F is interpreted as a subset FM of Dn (as usual).
3. An n-ary function symbol f is interpreted as a partial function

fM : Dn ⇀ D.
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Assigning Values

▶ α is a (partial) assignment of values to variables.
▶ [[x]]M,α = α(x)

▶ [[f(t1, . . . , tn)]]M,α = fM([[t1]]M,α, . . . , [[tn]]M,α) if each [[ti]]M,α is
defined, and fM is defined on the inputs [[t1]]M,α, . . . , [[tn]]M,α.
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Interpreting a Language

▶ M ⊨α t↓ iff [[t]]M,α is defined.
▶ M ⊨α Ft1 · · · tn iff for each i, the value [[ti]]M,α is defined, and the n-tuple

⟨[[tn]]M,α, . . . , [[tn]]M,α⟩ ∈ FM

▶ M ⊨α A∧ B iff M ⊨α A and M ⊨α B.
▶ M ⊨α A∨ B iff M ⊨α A or M ⊨α B.
▶ M ⊨α A ⊃ B iff M ̸⊨α A or M ⊨α B.
▶ M ⊨α ¬A iff M ̸⊨α A.
▶ M ⊨α (∀x)A(x) iff M ⊨α[x:=d] A(x) for every d in D.
▶ M ⊨α (∃x)A(x) iff M ⊨α[x:=d] A(x) for some d in D.
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Eliminating Cut

... δl(n)

X,n �A(n), Y
[∀R]

X � ∀xA(x), Y

... δr

X,A(t) � Y

... δ ′
r

X � t, Y
[∀L]

X, ∀xA(x) � Y
[Cut]

X � Y

simplifies to

... δ ′
r

X � t, Y

... δl(t)

X, t �A(t), Y

... δr

X,A(t) � Y
[Cut]

X, t � Y
[Cut]

X � Y
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quantified
modal logic



Flat hypersequents

A flat hypersequent is a non-empty multiset of sequents.

X1 � Y1 | X2 � Y2 | · · · | Xn � Yn
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Modal Rules

H[X � Y | X ′, A � Y ′]
[□L]

H[X,□A � Y | X ′ � Y ′]

H[X ′, A � Y ′]
[□L]

H[X ′,□A � Y ′]

H[X � Y | X ′ � A, Y ′]
[♢R]

H[X � ♢A, Y | X ′ � Y ′]

H[X ′ � A, Y ′]
[♢R]

H[X ′ � ♢A, Y ′]

H[X � Y | X ′ � Y ′] is a hypersequent
in which X � Y and X ′ � Y ′ are components.
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Deriving the Barcan Formula

Fn � Fn
[□L]

□Fn � | � Fn
[∀L]

∀x□Fx � | � Fn
[∀R]

∀x□Fx � | � ∀xFx
[□R]

∀x□Fx � □∀xFx
[⊃R]� ∀x□Fx ⊃ □∀xFx
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This derivation is blocked if we use the rules from free logic

Fn � Fn
[□L]

□Fn � | � Fn n � n | �
[∀L]

∀x□Fx, n � | � Fn
[??]

∀x□Fx � | � ∀xFx

The term n is in the wrong component for the derivation to go through

Weakening a copy of n into the right component will violate the eigenvariable
condition on [∀R]
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Migration rules

The addition of these rules would permit the derivation of the Barcan formula

H[t, X � Y | X ′ � Y ′]
[MigrateL]

H[X � Y | t, X ′ � Y ′]

H[X � Y, t | X ′ � Y ′]
[MigrateR]

H[X � Y | X ′ � Y ′, t]

But why think these rules should be adopted?
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Unrestricted quantifiers

H[X,A(t) � Y]
(any t) [ΠL]

H[X,ΠxA(x) � Y]

H[X � Y,A(n)]
(n fresh) [ΠR]

H[X � Y,ΠxA(x)]

H[X,A(n) � Y]
(n fresh) [ΣL]

H[X,ΣxA(x) � Y]

H[X � Y,A(t)]
(any t) [ΣR]

H[X � Y, ΣxA(x)]
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Unrestricted quantifiers

The derivation of the Barcan formula will go through with these rules

But, one can also derive F( 1
0
) � ΣxF(x)

Does this vindicate Meinongian views about existence?

There are other possible ways to adjust the quantifier rules, such as permitting
the term n in [∀R] to appear in some zone
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other topics



Identity

We have not introduced rules that deal much with terms occurring in formulas

Let’s look at Identity rules
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Left rules

The left rules for identity are fairly straightforward

X,ϕ(a) � Y
[= L]

X, a = b,ϕ(b) � Y

X � Y,ϕ(a)
[= L]

X, a = b � Y,ϕ(b)

The identity on the right rule is a bit trickier
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Right rule

The natural idea is

X,ϕ(a) �ϕ(b), Y X,ϕ(b) �ϕ(a), Y
[= R?]

X � Y, a = b

This presupposes that if a is not identical to b, then there is formula, ϕ, that
can distinguish them

One’s present vocabulary may not be up to that task
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Right rule done right

The solution to the problem is to recognize that identity is a higher-order
notion

Use schematic letters, here G, as a way to consider possible extensions of the
language

X,G(a) �G(b), Y X,G(b) �G(a), Y
(F fresh) [= R]

X � Y, a = b

As with term eigenvariables, predicate eigenvariables need to be inferentially
general
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Eliminating Cut

Want something like the following, although this is highly dependent on how
the system is set up

... δl(G)

X,G(a) �G(b), Y

... δr

X,G(b) �G(a), Y
[= R]

X � Y, a = b

... δ ′

X �ϕ(a), Y
[= L]

X, a = b �ϕ(b), Y
[Cut]

X �ϕ(b), Y

simplifies to

... δ ′

X �ϕ(a), Y

... δl(ϕ)

X,ϕ(a) �ϕ(b), Y
[Cut]

X �ϕ(b), Y
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Identity, alternative rules

Alternative rules may make it easier to eliminate Cut

a = a,X � Y
[= R]

X � Y

s = t,A(t), A(s), X � Y
[= L]

s = t,A(t), X � Y

One can use the Dragalin-style proof to show that Cut can be eliminated
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Higher-Order Quantifiers

The treatment of first-order quantifiers extends to second-order quantifiers in
a fairly straightforward way

We use predicate eigenvariables, which must be inferentially general

Second-order quantifiers range over properties, and there may be a property
that is not expressed by any formula in the language
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Second-Order Quantifier rules

X, F(t) � Y
(any F) [∀2L]

X, (∀Z)Z(x) � Y

X �G(t), Y
(G fresh) [∀2R]

X � (∀Z)Z(t), Y

X,G(t) � Y
(G fresh) [∃2L]

X, (∃Z)Z(t) � Y

X � F(t), Y
(any F) [∃2R]

X � (∃Z)Z(t), Y

In [∀2R] and [∃2L], the condition that G is fresh means that
G is an eigenvariable, not occurring in X and Y.
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Uniqueness

Suppose that we had two second-order universal quantifiers, (∀X) and (X),
both governed by the rules [∀2L] and [∀2R]

They can be shown to be interderivable

Ga �Ga
[∀2L]

(∀Z)Za �Ga
[∀2R]

(∀Z)Za � (Z)Za

Ga �Ga
[∀2L]

(Z)Za �Ga
[∀2R]

(Z)Za � (∀Z)Za

This appears to be a sense in which the rules uniquely pick out the
second-order universal quantifier

This may be surprising, given that there is some leeway on what the
interpretations for second-order quantifiers can be
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Tomorrow

Semantics and beyond

Speech Acts and Norms

Proofs and Models

Where to go from here
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