Proof Theory: Logical and Philosophical Aspects Class 4: Quantifiers and identity

Greg Restall and Shawn Standefer

 $\text{NASSLLI} \cdot \text{JULY} \ \text{2018} \cdot \text{CMU}$

Our Aim

To introduce *proof theory*, with a focus in its applications in philosophy, linguistics and computer science.

Our Aim for Today

Examine the behaviour of quantifiers and identity from the perspective of proof theory.

Today's Plan

First-Order Predicate Logic

Free Logic

Quantified Modal Logic

Other Topics

FIRST-ORDER PREDICATE LOGIC

Quantifier Derivations

Quantifier Derivations

Quantifier Derivations

Quantifier Rules

$$(any t) \frac{X, A(t) \succ Y}{X, \forall x A(x) \succ Y} [\forall L] \qquad (n fresh) \frac{X, A(n) \succ Y}{X, \exists x A(x) \succ Y} [\exists L]$$
$$(n fresh) \frac{X \succ A(n), Y}{X \succ \forall x A(x), Y} [\forall R] \qquad (any t) \frac{X \succ A(t), Y}{X \succ \exists x A(x), Y} [\exists R]$$

In $[\forall R]$ and $[\exists L]$, the condition that n is fresh means that n is an *eigenvariable*, not occurring in X and Y.

An eigenvariable is a singular term n that is *inferentially general*.

That is, if $\pi(n)$ is a derivation of $X(n) \succ Y(n)$, then for any term t, $\pi(t)$ is a derivation of $X(t) \succ Y(t)$ (where we have replaced n by t through all the ancestors of each n occurring in $X(n) \succ Y(n)$ through $\pi(n)$.)

Isn't every term inferentially general?

- Function terms aren't. We can prove (∃x)(fx = <u>fn</u>), but not (∃x)(fx = t) for arbitrary t.
- ► In sequent presentations of theories, constants can be inferentially specific. For example, in PA we can prove (∀x)(0 ≠ x') but not (∀x)(t ≠ x').

The Point of Inferential Generality: Eliminating Cut

We need to transform $\delta_l(n)$ into a proof of $X \succ A(t)$, Y in order to simplify the Cut.

$$\frac{ \vdots \delta_{l}(t) \qquad \vdots \delta_{r} }{ \frac{X \succ A(t), Y \qquad X, A(t) \succ Y}{X \succ Y} }_{\text{[Cut]}}$$

FREE LOGIC

It is difficult to eliminate non-denoting terms as a matter of *syntax*.

$$\frac{1}{0} \qquad \lim_{x \to 0} \frac{\sin x}{x} \qquad \sum_{n=0}^{\infty} f(n) \qquad Pegasus$$

It is difficult to eliminate non-denoting terms as a matter of *syntax*.

$$(\forall x)(x < 0 \lor x = 0 \lor x > 0) \not\neq (\frac{1}{0} < 0 \lor \frac{1}{0} = 0 \lor \frac{1}{0} > 0)$$

$$\frac{1}{0} \qquad \lim_{x \to 0} \frac{\sin x}{x} \qquad \sum_{n=0}^{\infty} f(n) \qquad \textit{Pegasus}$$

It is difficult to eliminate non-denoting terms as a matter of *syntax*.

$$(\forall \mathbf{x})(\mathbf{x} < \mathbf{0} \lor \mathbf{x} = \mathbf{0} \lor \mathbf{x} > \mathbf{0}) \not\neq (\frac{1}{\mathbf{0}} < \mathbf{0} \lor \frac{1}{\mathbf{0}} = \mathbf{0} \lor \frac{1}{\mathbf{0}} > \mathbf{0})$$

How can we modify the quantifier rules to allow for non-denoting terms?

Pro and Con attitudes to Terms

To rule a term *in* is to take it as suitable to substitute into a quantifier, i.e., to take the term to *denote*.

To rule a term *out* is to take it as unsuitable to substitute into a quantifier, i.e., to take the term to *not denote*.

Pro and Con attitudes to Terms

To rule a term *in* is to take it as suitable to substitute into a quantifier, i.e., to take the term to *denote*.

To rule a term *out* is to take it as unsuitable to substitute into a quantifier, i.e., to take the term to *not denote*.

We add terms to the LHS and RHS of sequents $X \succ Y$.

Structural Rules remain as before

 $\star \succ \star [Id]$

$$\frac{X \succ Y}{X, \star \succ Y} [KL] \qquad \qquad \frac{X \succ Y}{X \succ \star, Y} [KR] \qquad \qquad \frac{X, \star, \star \succ Y}{X, \star \succ Y} [WL] \qquad \qquad \frac{X \succ \star, \star, Y}{X \succ \star, Y} [WR]$$

$$\frac{X \succ \star, Y \qquad X, \star \succ Y}{X \succ Y}$$
[Cut]

Here \star is either a sentence or a term.

Greg Restall and Shawn Standefer

Proof Theory:, Logical and Philosophical Aspects

Modified Quantifier Rules

$$(any t) \frac{X, A(t) \succ Y \qquad X \succ t, Y}{X, \forall x A(x) \succ Y} \quad [\forall L] \qquad (n \text{ fresh}) \frac{X, n, A(n) \succ Y}{X, \exists x A(x) \succ Y} \quad [\exists L]$$
$$(n \text{ fresh}) \frac{X, n \succ A(n), Y}{X \succ \forall x A(x), Y} \quad [\forall R] \qquad (any t) \frac{X \succ A(t), Y \qquad X \succ t, Y}{X \succ \exists x A(x), Y} \quad [\exists R]$$

3.4

.

In $[\forall R]$ and $[\exists L]$, the condition that n is fresh means that n is an *eigenvariable*, not occurring in X and Y.

Making Denotation Explicit

Example Derivations

Example Derivations

 $\frac{Ft \succ Ft \qquad t \succ t}{\frac{\forall xFx, t \succ Ft}{\forall xFx, t \downarrow \succ Ft}} \underset{[\downarrow L]}{ [\forall L]}$

Definedness Logic

SOLOMON FEFERMAN*

DEFINEDNESS

ABSTRACT. Questions of definedness are ubiquitous in mathematics. Informally, these involve reasoning about expressions which may or may not have a value. This paper surveys work on logics in which such reasoning can be carried out directly, especially in computational contexts. It begins with a general logic of "partial terms", continues with partial combinatory and lambda calculi, and concludes with an expressively rich theory of partial functions and polymorphic types, where termination of functional programs can be established in a natural way.

Erkenntnis 43: 295–320, 1995.

Definedness, function terms and predicates

$$\frac{t_i, X \succ Y}{f(t_1, \dots, t_n), X \succ Y} \stackrel{[fL]}{=} \frac{t_i, X \succ Y}{Ft_1 \cdots t_n, X \succ Y} \stackrel{[FL]}{=}$$

A model for the logic DL is a structure ${\mathfrak M}$ consisting of

- 1. A domain D.
- 2. An n-ary predicate F is interpreted as a subset $F^{\mathfrak{M}}$ of $D^{\mathfrak{n}}$ (as usual).
- 3. An n-ary function symbol f is interpreted as a *partial function* $f^{\mathfrak{M}} : D^n \rightarrow D$.

Assigning Values

- α is a (partial) assignment of values to variables.
- $\llbracket x \rrbracket_{\mathfrak{M}, \alpha} = \alpha(x)$
- ► $\llbracket f(t_1, \ldots, t_n) \rrbracket_{\mathfrak{M}, \alpha} = f^{\mathfrak{M}}(\llbracket t_1 \rrbracket_{\mathfrak{M}, \alpha}, \ldots, \llbracket t_n \rrbracket_{\mathfrak{M}, \alpha})$ if each $\llbracket t_i \rrbracket_{\mathfrak{M}, \alpha}$ is defined, and $f^{\mathfrak{M}}$ is defined on the inputs $\llbracket t_1 \rrbracket_{\mathfrak{M}, \alpha}, \ldots, \llbracket t_n \rrbracket_{\mathfrak{M}, \alpha}$.

Interpreting a Language

- $\mathfrak{M} \vDash_{\alpha} t \downarrow iff \llbracket t \rrbracket_{\mathfrak{M}, \alpha}$ is defined.
- ► $\mathfrak{M} \vDash_{\alpha} \mathsf{Ft}_{1} \cdots \mathsf{t}_{n}$ iff for each i, the value $\llbracket \mathsf{t}_{i} \rrbracket_{\mathfrak{M},\alpha}$ is defined, and the n-tuple $\langle \llbracket \mathsf{t}_{n} \rrbracket_{\mathfrak{M},\alpha}, \dots, \llbracket \mathsf{t}_{n} \rrbracket_{\mathfrak{M},\alpha} \rangle \in \mathsf{F}^{\mathfrak{M}}$
- $\mathfrak{M} \vDash_{\alpha} A \wedge B$ iff $\mathfrak{M} \vDash_{\alpha} A$ and $\mathfrak{M} \vDash_{\alpha} B$.
- $\mathfrak{M} \vDash_{\alpha} A \lor B$ iff $\mathfrak{M} \vDash_{\alpha} A$ or $\mathfrak{M} \vDash_{\alpha} B$.
- $\mathfrak{M} \vDash_{\alpha} A \supset B$ iff $\mathfrak{M} \nvDash_{\alpha} A$ or $\mathfrak{M} \vDash_{\alpha} B$.
- $\mathfrak{M} \vDash_{\alpha} \neg A$ iff $\mathfrak{M} \not\vDash_{\alpha} A$.
- $\mathfrak{M} \vDash_{\alpha} (\forall x) A(x)$ iff $\mathfrak{M} \vDash_{\alpha[x:=d]} A(x)$ for every d in D.
- $\mathfrak{M} \vDash_{\alpha} (\exists x) A(x)$ iff $\mathfrak{M} \vDash_{\alpha[x:=d]} A(x)$ for some d in D.

Eliminating Cut

simplifies to

QUANTIFIED MODAL LOGIC

Flat hypersequents

A flat hypersequent is a non-empty multiset of sequents.

$$X_1 \succ Y_1 \mid X_2 \succ Y_2 \mid \cdots \mid X_n \succ Y_n$$

Modal Rules

$$\frac{\mathcal{H}[X \succ Y \mid X', A \succ Y']}{\mathcal{H}[X, \Box A \succ Y \mid X' \succ Y']} [\Box L] \qquad \qquad \frac{\mathcal{H}[X', A \succ Y']}{\mathcal{H}[X', \Box A \succ Y']} [\Box L] \qquad \qquad \frac{\mathcal{H}[X', A \succ Y']}{\mathcal{H}[X', \Box A \succ Y']} [\Box L] \qquad \qquad \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ \Diamond A, Y \mid X' \succ Y']} [\Diamond R] \qquad \qquad \frac{\mathcal{H}[X' \succ A, Y']}{\mathcal{H}[X' \succ \Diamond A, Y']} [\Diamond R]$$

$\mathcal{H}[X \succ Y \mid X' \succ Y']$ is a hypersequent in which $X \succ Y$ and $X' \succ Y'$ are components.

Deriving the Barcan Formula

This derivation is blocked if we use the rules from free logic

The term n is in the wrong component for the derivation to go through

Weakening a copy of n into the right component will violate the eigenvariable condition on [\forall R]

Migration rules

The addition of these rules would permit the derivation of the Barcan formula

$$\frac{\mathcal{H}[t, X \succ Y \mid X' \succ Y']}{\mathcal{H}[X \succ Y \mid t, X' \succ Y']} \begin{bmatrix} \textit{MigrateL} \end{bmatrix} \qquad \qquad \frac{\mathcal{H}[X \succ Y, t \mid X' \succ Y']}{\mathcal{H}[X \succ Y \mid X' \succ Y', t]} \begin{bmatrix} \textit{MigrateR} \end{bmatrix}$$

But why think *these* rules should be adopted?

Unrestricted quantifiers

$$(any t) \frac{\mathcal{H}[X, A(t) \succ Y]}{\mathcal{H}[X, \Pi x A(x) \succ Y]} [\Pi L] \qquad (n fresh) \frac{\mathcal{H}[X, A(n) \succ Y]}{\mathcal{H}[X, \Sigma x A(x) \succ Y]} [\Sigma L]$$
$$(n fresh) \frac{\mathcal{H}[X \succ Y, A(n)]}{\mathcal{H}[X \succ Y, \Pi x A(x)]} [\Pi R] \qquad (any t) \frac{\mathcal{H}[X \succ Y, A(t)]}{\mathcal{H}[X \succ Y, \Sigma x A(x)]} [\Sigma R]$$

The derivation of the Barcan formula will go through with these rules But, one can also derive $F(\frac{1}{0})\succ \Sigma xF(x)$

Does this vindicate Meinongian views about existence?

There are other possible ways to adjust the quantifier rules, such as permitting the term n in $[\forall R]$ to appear in *some* zone

OTHER TOPICS

Identity

We have not introduced rules that deal much with terms occurring in formulas

Let's look at Identity rules

Left rules

The left rules for identity are fairly straightforward $\frac{X, \varphi(a) \succ Y}{X, a = b, \varphi(b) \succ Y} \stackrel{[= L]}{=} \frac{X \succ Y, \varphi(a)}{X, a = b \succ Y, \varphi(b)} \stackrel{[= L]}{=}$

The identity on the right rule is a bit trickier

Right rule

The natural idea is $\frac{X, \varphi(a) \succ \varphi(b), Y \qquad X, \varphi(b) \succ \varphi(a), Y}{X \succ Y, a = b} \stackrel{[= R?]}{=}$

This presupposes that if α is not identical to b, then there is formula, $\varphi,$ that can distinguish them

One's present vocabulary may not be up to that task

Right rule done right

The solution to the problem is to recognize that identity is a higher-order notion

Use schematic letters, here G, as a way to consider possible extensions of the language

$$(\textit{Ffresh}) \ \frac{X, G(a) \succ G(b), Y \qquad X, G(b) \succ G(a), Y}{X \succ Y, a = b} = R]$$

As with term eigenvariables, predicate eigenvariables need to be inferentially general

Eliminating Cut

Want something like the following, although this is highly dependent on how the system is set up

 $\delta_1(G)$ δ_r : 8' $\frac{J(a), Y}{I[=R]} = \frac{X \succ \phi(a), Y}{X, a = b \succ \phi(b), Y} = L$ [Cut] $\frac{X, G(a) \succ G(b), Y \qquad X, G(b) \succ G(a), Y}{2}$ $X \succ Y, a = b$ $X \succ \phi(b), Y$ simplifies to $\delta_1(\Phi)$: 8' $\underbrace{X \succ \varphi(a), Y \qquad X, \varphi(a) \succ \varphi(b), Y}_{}$ _____ [Cut] $X \succ \phi(b), Y$

Alternative rules may make it easier to eliminate Cut

$$\frac{a = a, X \succ Y}{X \succ Y} = R$$

$$\frac{s = t, A(t), A(s), X \succ Y}{s = t, A(t), X \succ Y} \stackrel{[= L]}{=}$$

One can use the Dragalin-style proof to show that Cut can be eliminated

Higher-Order Quantifiers

The treatment of first-order quantifiers extends to second-order quantifiers in a fairly straightforward way

We use predicate eigenvariables, which must be inferentially general

Second-order quantifiers range over properties, and there may be a property that is not expressed by any formula in the language

Second-Order Quantifier rules

$$(any F) \frac{X, F(t) \succ Y}{X, (\forall Z) Z(x) \succ Y} [\forall^{2}L] \qquad (G fresh) \frac{X, G(t) \succ Y}{X, (\exists Z) Z(t) \succ Y} [\exists^{2}L]$$
$$(G fresh) \frac{X \succ G(t), Y}{X \succ (\forall Z) Z(t), Y} [\forall^{2}R] \qquad (any F) \frac{X \succ F(t), Y}{X \succ (\exists Z) Z(t), Y} [\exists^{2}R]$$

In $[\forall^2 R]$ and $[\exists^2 L]$, the condition that G is fresh means that G is an *eigenvariable*, not occurring in X and Y.

Uniqueness

Suppose that we had two second-order universal quantifiers, $(\forall X)$ and (X), both governed by the rules $[\forall^2 L]$ and $[\forall^2 R]$

They can be shown to be interderivable

This appears to be a sense in which the rules uniquely pick out the second-order universal quantifier

This may be surprising, given that there is some leeway on what the interpretations for second-order quantifiers can be

Semantics and beyond

Speech Acts and Norms

Proofs and Models

Where to go from here

References

SOLOMON FEFERMAN

"Definedness." Erkenntnis, 43 (3):295–320, 1995.

SARA NEGRI AND JAN VON PLATO Proof Analysis Cambridge University Press, 2011.

STEPHEN READ

"Harmonic inferentialism and the logic of identity." In Review of Symbolic Logic 9 (2):408–420, 2016.

GREG RESTALL

"Generality and Existence I: Quantification and Free Logic." http://consequently.org/writing/generality-and-existence-1/

GREG RESTALL

"Existence and Definedness: the semantics of possibility and necessity." http://consequently.org/writing/existence-definedness/

THANK YOU!

https://standefer.net/teaching/ @consequently/@standefer on Twitter