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Our Aim

To introduce proof theory, with a focus in its
applications in philosophy, linguistics and
computer science.



Our Aim for Today

Examine the behaviour of quantifiers and identity
from the perspective of proof theory.



Today's Plan

First-Order Predicate Logic
Free Logic
Quantified Modal Logic

Other Topics



FIRST-ORDER
PREDICATE LOGIC



Quantifier Derivations

Fa> Fa Ga> Ga
[VL

VxFx > Fa ] vxGx > Ga AR
VxFx, VxGx > Fa A\ Ga
YxFx AVxGx > Fa A Ga
VxFx A VxGx > Vx(Fx A Gx)

AL

[VR]



Quantifier Derivations

Fa> Fa Ga> Ga
[3R] [3R]
Fa > IxFx Ga > IxGx :
FaV Ga> IxFx, IxGx R
FaV Ga»> IxFx V IxGx -

Ix(Fx V Gx) » IxFx V IxGx



Quantifier Derivations

Fa>Fa Ga> Ga
[VL]

FaV Ga> Fa,Ga L
Vx(Fx V Gx) > Fa, Ga

[3R]
Vx(Fx V Gx) > Fa, 3xGx

[VR]

[VR]

(
( )

Vx(Fx V Gx) > VxFx, 3xGx
Vx(Fx V Gx) » VxFx V IxGx



Quantifier Rules

X,A(t) Y X,A(n)>Y
(anyt) ———— [vI] M fresh) ————— [31]
X, VxA(x)>Y X, IxA(x)>Y
X>Am),Y X>A(t),Y
(n freshy —— [VR] (anyt) ———  [3R]
X>VxA(x),Y X > IxA(x),Y

In [VR] and [3L], the condition that n is fresh means that
M is an eigenvariable, not occurring in X and Y.



What s an eigenvariable?

An eigenvariable is a singular term n
that is inferentially general.

That s, if 7t(n) is a derivation of X(n) > Y(n),
then for any term t, 7t(t) is a derivation of X(t) > Y/(t)
(where we have replaced n by t through all the ancestors
of each n occurring in X(n) » Y(n) through 7t(n).)



Isn't every term inferentially general?

» Function terms aren’t.
We can prove (3x)(fx = fn), but not (3x)(fx = t) for arbitrary t.

» In sequent presentations of theories, constants can be inferentially
specific. For example, in PA we can prove (Vx)(0 # x’) but not

(vx)(t #x).



The Point of Inferential Generality: Eliminating Cut

o1 (n) o
X>A(n),Y X,A(t)»Y
—— [VR] —— [V1]
X>VxA(x),Y X, VxA(x) > Y

[Cut]
X>Y

We need to transform §;(n) into a proof
of X > A(t), Yin order to simplify the Cut.

81(t) : Oy
X>A((t),Y X/A(t)»Y
X>Y

[Cut]




FREE LOGIC



Non-Denoting Terms

. sinx >
fm == 2T



Non-Denoting Terms

sin x >

lim — f(n Pegasus

x1—>0 X ZO ( ) g U
n=



Non-Denoting Terms

lim 22 Z f(n) Pegasus

x—0 X

ol —

n=0

It is difficult to eliminate non-denoting terms as a matter of syntax.



Non-Denoting Terms

lim 22 Z f(n) Pegasus

x—0 X

ol —

n=0

It is difficult to eliminate non-denoting terms as a matter of syntax.

(Vx)(x<0\/x:0\/x>0)>/(%<O\/%:0\/2—)>O)



Non-Denoting Terms

lim 22 Z f(n) Pegasus

x—0 X

ol —

n=0

It is difficult to eliminate non-denoting terms as a matter of syntax.
(Vx)(x < O0Vx=0Vx>0) %(J—J<O\/%:0\/(‘—) > 0)

How can we modify the quantifier rules
to allow for non-denoting terms?



Pro and Con attitudes to Terms

To rule a term in is to take it as suitable
to substitute into a quantifier,
1.e., to take the term to denote.

To rule a term out is to take it as unsuitable
to substitute into a quantifier,
i.e., to take the term to not denote.



Pro and Con attitudes to Terms

To rule a term in is to take it as suitable
to substitute into a quantifier,
1.e., to take the term to denote.

To rule a term out is to take it as unsuitable
to substitute into a quantifier,

i.e., to take the term to not denote.

We add terms to the LHS and RHS of sequents X > Y.



Structural Rules remain as before

* > % [Id]

ﬂ KL] X>Y (KR] X, oy K > Y WL
Xy x> ¥ X>*Y X, *%>Y

X>*Y K*»Y[
X>Y

Cut]

Here « is either a sentence or a term.

X»th[

X>%Y

WR]



Modified Quantifier Rules

XA >-Y  X>-t,Y X,n,A(n)>Y
(any t) VL] M fresh) —————— [31]
X, VxA(x)>Y X, IXA(x)>Y
X,n>A(n),Y X>A(t),Y X»>t,Y
(n fresh) [VR] (any t) [3R]
X>VxA(x),Y X > IxA(x),Y

In [VR] and [3L], the condition that n is fresh means that
M is an eigenvariable, not occurring in X and Y.



X, t>Y

X, tl>-Y

Making Denotation Explicit



Example Derivations

Fnyn>Fn Gn»> Gn

D
fn D Gn,n,Fn> Gn Ffn> Gnyn,fn>n 1
Vx(Fx D Gx),n,Fn> Gn vx(Fx D Gx),n,Fn>n

[3R]
Vx(Fx D Gx),n, Fn > IxGx

=18
Vx(Fx D Gx), IxFx > IxGx

[DR]
Vx(Fx D Gx) > IxFx D IxGx



Example Derivations

Ft>-Ft t>t
VxFx,t> Ft e
VxFx,t] > Ft

VL]



Definedness Logic

SOLOMON FEFERMAN*

DEFINEDNESS

ABSTRACT. Questions of definedness are ubiquitous in mathematics. Informally, these
involve reasoning about expressions which may or may not have a value. This paper
surveys work on logics in which such reasoning can be carried out directly, especially in
computational contexts. It begins with a general logic of “partial terms”, continues with
partial combinatory and lambda calculi, and concludes with an expressively rich theory of
partial functions and polymorphic types, where termination of functional programs can be
established in a natural way.

Erkenntnis 43: 295-320, 1995.



Definedness, function terms and predicates

F(tyy e tn), XY Fty - to, X> Y



Models

A MODEL for the logic DL is a structure 9% consisting of
1. Adomain D.
2. An n-ary predicate F is interpreted as a subset F™* of D™ (as usual).

3. An n-ary function symbol f is interpreted as a partial function
7. D" — D.



Assigning Values

» «is a (partial) assignment of values to variables.
> [xlgp = alx)

> [ty ey ta)lgp o = P ([ilog gy - -+ [tnlon ) ifeach [tilgy i
defined, and s defined on the i 1nputs [[tﬂ]m J [[tn]]sm,a



Interpreting a Language

> M E, t]iff [[t]]fm,cx is defined.

» M Ey Fty -+ -ty iff for each 1, the value [[ti]]zm, « 1s defined, and the n-tuple
(Ftadg s - -+ [tnlgy o) € 12

» MEL,AANABIf MM E, Aand N F, B.

MELAVBIUfME, Aor I E, B.

MEL A DBIff M, Aor I E, B.

M E, —AIMTM Hy A

M Ex (VX)A(x) DM Ey.—q) Alx) for every din D.

M Ex (Ix)A(x) HEM Eyp.—q) Alx) for some din D.

v

v

v

v

v



Eliminating Cut

:51(n) 25, 20
X,n>A(m),Y XA Y X>-tY
[VR] VL]
X>VxA(x),Y X, VxA(x) > Y
[Cut]
X>Y

simplifies to

(81(t) :Or
28! X,t>~A(t),Y XA(t)>Y
[Cut]
X>-t,Y X, t>-Y

[Cut]
X>Y



QUANTIFIED
MODAL LOGIC



Flat hypersequents

A flat hypersequent is a non-empty multiset of sequents.

Xi>Yr | Xo>Yo | <o+ | Xq>Yn



Modal Rules

HIX>Y | X, A>Y'] HIX A > Y]

(0L) (0L
HIX,OA > Y | X > Y] HIX!,0A > Y]
HIX>Y | X' >~AY] HIX > A, Y]

[OR] —— [OR]
HIX> OAY | X/ > Y] HIX > OA, Y]

H[X>Y | X'>Y']isahypersequent
in which X > Y and X’ > Y’ are components.



Deriving the Barcan Formula

>
OMm> | »Fn

YxOFx > | » Fn
YxOFx > | > VxFx

VxOFx > OVxFx
> VxOFx D OVxFx

o0

VL]

[VR]

[OR]
[DR]




This derivation is blocked if we use the rules from free logic

n>m
[an]

OFn> | »Fn n>n | >

VL]
vxOFx,n > | > Fn

YxOFx > | » VxFx

(2]

The term n is in the wrong component for the derivation to go through

Weakening a copy of n into the right component will violate the eigenvariable
condition on [VR]



Migration rules

The addition of these rules would permit the derivation of the Barcan formula

HE,X>Y | X' >Y] HIX>Y,t] X' >Y]
[MigrateL] [MigrateR]
HIX> Y|t X > Y HIX> Y| X > Y 4]

But why think these rules should be adopted?



Unrestricted quantifiers

HIX,A(t) > Y] HIX,A(n) > Y]
(any t) [TTL] (n fresh) [ZL]
HIX, TTxA(x) > Y] HIX, ZxA(x) > Y]
HIX > Y, A(n)] HIX > Y, A(t)]
(n fresh) [TTR] (any t) [ZR]

HIX > Y, TIxA(x)] HIX > Y, ZxA(x)]



Unrestricted quantifiers

The derivation of the Barcan formula will go through with these rules
But, one can also derive F(%) > ZxF(x)
Does this vindicate Meinongian views about existence?

There are other possible ways to adjust the quantifier rules, such as permitting
the term n in [VR] to appear in some zone



OTHER TOPICS



|dentity

We have not introduced rules that deal much with terms occurring in formulas

Let’s look at Identity rules



Left rules

The left rules for identity are fairly straightforward

X, dla) Y X>Y, ¢(a)

[=1] [=1]
X,a=b,d(b)>Y X,a=b>Y,¢p(b)

The identity on the right rule is a bit trickier



Right rule

The natural idea is

X, d(a) > d(b),Y X, p(b) > d(a),Y
X>Y,a=Db

[=R?]

This presupposes that if a is not identical to b, then there is formula, ¢, that
can distinguish them

One’s present vocabulary may not be up to that task



Right rule done right

The solution to the problem is to recognize that identity is a higher-order
notion

Use schematic letters, here G, as a way to consider possible extensions of the
language

X,G(a)> G(b),Y X,G(b)>G(a),Y
(F fresh) [=R]
X>Y,a="D>

As with term eigenvariables, predicate eigenvariables need to be inferentially
general



Eliminating Cut

Want something like the following, although this is highly dependent on how
the system is set up

:81(G) Oy Y
X,G(a) > G(b),Y X,G(b)>G(a),Y X>d(a),Y
X>Y,a=b Y X a=b gLy
X> d(b), Y o

simplifies to

5! :51(d)
X>¢(a),Y X,d(a)>d(b),Y
X>¢(b),Y

[Cut]




Identity, alternative rules

Alternative rules may make it easier to eliminate Cut

a:a,X>Y[_

=R]
X>Y

s =1t,A(t),A(s),X>Y
=1
s =t,A(t),X>Y

One can use the Dragalin-style proof to show that Cut can be eliminated



Higher-Order Quantifiers

The treatment of first-order quantifiers extends to second-order quantifiers in
a fairly straightforward way

We use predicate eigenvariables, which must be inferentially general

Second-order quantifiers range over properties, and there may be a property
that is not expressed by any formula in the language



Second-Order Quantifier rules

X,F(t)»Y X,G(t)»Y
(any F) v2L1] (G fresh) 320
X,(VZ)Z(x)>Y X,(32)Z(t)>Y
X>G(t),Y X>F(t),Y
(G fresh) [V2R] (any F) [(32R]
X> (VZ)Z(t),Y X»>(3Z2)Z(t),Y

In [V2R] and [32L], the condition that G is fresh means that
G is an eigenvariable, not occurring in X and Y.



Uniqueness

Suppose that we had two second-order universal quantifiers, (VX) and (X),
both governed by the rules [V21] and [V2R]

They can be shown to be interderivable

Ga> Ga Ga> Ga
—— V21 — V21
(VZ)Za> Ga (Z)Za> Ga

V2RI [V2R]
(VZ)Za> (Z)Za (Z)Za> (VZ)Za

This appears to be a sense in which the rules uniquely pick out the
second-order universal quantifier

This may be surprising, given that there is some leeway on what the
interpretations for second-order quantifiers can be



Tomorrow

Semantics and beyond

Speech Acts and Norms
Proofs and Models

Where to go from here
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THANK YOU!

https://standefer.net/teaching/

@consequently / @standefer on Twitter
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