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1. Introduction

Logical inferentialism is, roughly, the view that the meaning of a logi-
cal connective is determined by the inference rules governing that con-
nective. For example, in systems of natural deduction the introduction 
and elimination rules for a connective fix its meaning. The paradigmatic 
example is conjunction, governed by the following rules.
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The conceptual content of conjunction is given, not by a truth-condition, 
but by the inferential role specified by the inference rules governing it. 
The introduction rule tells us under what conditions we are entitled to 
assert a conjunction, namely when we are entitled to assert its conjuncts, 
and the elimination rules tell us what we commit ourselves to when we 
assert a conjunction, namely, to both conjuncts.

However, it is well known that some combinations of rules for a 
 connective can result in disaster. The most famous example is Prior’s 
(1961) tonk, ��:1
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The inference rules for tonk lead to a trivial consequence relation where 
any conclusion is derivable from any (non-empty) set of premises. So if 
logical inferentialism is correct, there has to be some constraint on which 
inference rules can confer meaning on a connective. In an early response 
to Prior, Belnap (1962) suggested a constraint that has proved influential: 
the inferentialist should require that the addition of logical vocabulary to a 
consequence relation should be a conservative extension. An extension Lƍ 
of a theory L is conservative when the language of Lƍ contains that of L and  
X ⇒Lމ A only if X ⇒L A, when X and A are in the language of L. The 
condition will rule out tonk as a legitimate expression, assuming that the 
original theory has a nontrivial standard consequence relation.
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Robert Brandom, following the work of Michael Dummett, endorses 
conservativeness as a requirement. Among the reasons Brandom gives for 
requiring that extensions be conservative is the expressive role of logic:

But the expressive account of what distinguishes logical vocabulary 
shows us a deep reason for this demand [of conservative extension]; 
it is needed not only to avoid horrible consequences but also because 
otherwise logical vocabulary cannot perform its expressive function. 
Unless the introduction and elimination rules are inferentially con-
servative, the introduction of the new vocabulary licenses new mate-
rial inferences, inferences good in virtue of the concepts involved 
rather than their form, and so alters the contents associated with 
the old vocabulary. So if logical vocabulary is to play its distinctive 
expressive role of making explicit the original material inferences, 
and so conceptual contents expressed by the old vocabulary, it must 
be a criterion of adequacy for introducing logical vocabulary that no 
new inferences involving only the old vocabulary be made appropri-
ate thereby.

(Brandom 2000, 68–69)

The distinctive feature of logical vocabulary, on Brandom’s view, is that it 
makes explicit aspects of a community’s inferential practice. According to 
Brandom, the conceptual content of nonlogical expressions is determined 
by the material inferences they license. Logical expressions serve to make 
explicit this implicit content. So if the addition of new logical vocabulary 
results in new inferences in the old vocabulary becoming valid, then the 
inferential connections of the old vocabulary have been altered.

Even if conservativeness can be motivated as a constraint on logical 
vocabulary, it has limitations. One issue is that conservativeness is a 
global property of a logical system. Consequently, whether an extension 
is conservative can depend on what other connectives are already in the 
system. As a result, logical inferentialists have attempted to impose a 
local property on inference rules that prohibit problematic connectives 
like tonk. Following Dummett, such a local constraint is often called 
harmony. Harmony, whatever the formal details, is a local property 
that holds, when it does, in virtue of the rules governing a given connec-
tive.2 As recent work has shown, however, there are distinct concepts of 
harmony, even in the work of Dummett, and not all of these imply that 
certain additions will be conservative.3

A further point, on which we will focus, is that harmony itself has 
relevant parameters that can be brought out. These background or struc-
tural features of a logical system can represent aspects of an inferential 
practice, so they are of interest to a Dummettian-Brandomian logical 
inferentialist. In section 2, we will present some background on harmony, 
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normalization, and cut elimination. Once we have this background in 
place, our discussion will have two streams: dropping structural rules of 
logical systems and enriching logical systems with additional structural 
elements. In section 3, we will consider substructural logics and the issues 
they bring for conservative extensions and harmony. The substructural 
setting introduces a bifurcation of logical connectives, leading to a well-
known problem, namely the failure of a distributive law relating one form 
of conjunction and disjunction. We will present this issue in section 4 and 
consider plausible inferentialist responses, leading to the suggestion of 
enriching the sequent structure. Enrichment of sequent structure will be 
further considered in section 5 as a general response to problems with 
harmony and modal operators. Let us turn to the background.

2. Conservativeness

We will begin by discussing the conditional. One reason for this focus is 
that the conditional is Brandom’s paradigm of logical vocabulary.

Conditional claims—and claims formed by the use of logical vocab-
ulary in general, of which the conditional is paradigmatic for the 
 inferentialist—express a kind of semantic self-consciousness because 
they make explicit the inferential relations, consequences, and con-
tents of ordinary nonlogical claims and concepts.

(Brandom 2000, 21)

Consider the standard natural deduction introduction and elimination 
rule for the conditional:4
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The leftmost rule is a hypothetical rule: If we can infer B from the assump-
tion A, we can conclude that A → B and discharge the assumption A. The 
rule is also known as conditional proof. In Brandomian terms, it encap-
sulates the idea that the conditional A → B makes explicit an inferential 
connection between A and B. Correspondingly, the rightmost rule (→E) 
(Modus Ponens) allows us to infer B from A and A → B. There is an intu-
itive harmony between the inference rules. The elimination rule allows us 
to infer B from A, thus unpacking the inferential connection.

The question is how we can make the intuitive idea of harmony 
between inference rules precise. What is it in general that is required for 
the introduction rules and elimination rules of a logical expression to be 
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in harmony? One preliminary way of spelling it out is by invoking what 
Prawitz (1965) calls reduction conversions. Consider the following deri-
vation (where 30, 31 are subderivations):
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The above derivation has an application of (→I) immediately followed 
by an application of (→E). Prawitz notes that such a derivation can be 
converted into a derivation that avoids a detour:
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Since the original derivation already had a derivation of A, and a deriva-
tion of B from A, the detour through the applications of (→I) and (→E) 
is unnecessary. This is the reduction conversion for the conditional.

The existence of the conversion is a decisive component in the proof of 
normalization. Suppose the natural deduction system only has the infer-
ence rules (→I) and (→E). Then we can show that every derivation can be 
transformed into a corresponding derivation in normal form (i.e. a deri-
vation without any formula occurrence A → B that is both the conclusion 
of an (→I) application and the major premise in a (→E)  application). 
That in turn leads to the sub-formula property, the fact that if A is deriv-
able from Γ, there is a derivation where every node is a subformula of 
A or some B ∈ Γ. Normalization and the subformula property can also 
be proved if we add the standard introduction and elimination rules for  
∧ and ∨. The subformula property then furthermore entails the separa-
tion property: if A is derivable from Γ, there is a derivation that only 
applies inference rules for connectives occurring in A or some B ∈ Γ. So, 
extending a language consisting of some members of {∨, ∧, →} to the 
language L    ∨,∧,→, and extending the proof system with the corresponding 
rules, always yields a conservative extension.

Conversion reductions are, in other words, a way of ensuring that the 
addition of standard connectives will be conservative extensions. It is 
natural to think that the idea can be generalized to a template for har-
mony as a local constraint on inference rules. In turn, the formal harmony 
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constraint should entail conservativeness. Harmony can then serve as a 
recipe for how to construct inference rules for new logical vocabulary in 
a way that does not alter the conceptual content of the original vocabu-
lary. Although the idea works well for a limited set of connectives, it runs 
into trouble when extended to more interesting languages.

One reason is that there are connectives that have reduction conver-
sions but whose introduction leads to nonconservativeness. Consider for 
example the following connective, bullet:5
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With the rules (•I) and (•E) we can give the following reduction 
conversion:
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Nonetheless, (•I) and (•E) leads to inconsistency in a straightforward 
manner (i.e., it allows a derivation of ⊥).

[ ] [ ]

( ) ( )

• •
⊥
•

• •
⊥
•

⊥

1 2 2

1 2

   [ ]    [ ]1

To apply the reduction conversion, one branch, say the leftmost, needs to 
be pasted onto each of the discharged assumptions of the other branch. It 
is not too hard to see that repeated applications of the reduction conver-
sion will not terminate. So, the existence of a reduction conversion does 
not guarantee conservativeness. Further, given the usual rules govern-
ing ⊥, this then leads to triviality: the addition of bullet, governed by the 
rules (•I) and (•E) results in every formula being provable.

It is tempting to blame the problem on the relative strangeness of a 
connective like •. Not unlike tonk, it is designed to lead to inconsistency. 
Perhaps there are other conditions the inferentialist could apply in order 
to block connectives of this sort. But unfortunately there are other, less 
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artificial connectives that also resist an analysis in terms of reduction 
conversions.

Negation is a case in point. The good news is that intuitionistic negation 
can also be conservatively added to the previous language with ∨, ∧, and →.  
Take the following standard introduction and elimination rule for the 
intuitionistic negation:
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The rules give rise to a conversion reduction just like the one we saw for 
the conditional above:
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The resulting proof system has the separation property. Unfortunately, 
this is where the good news ends. Although the separation result holds 
for intuitionistic negation, it cannot be straightforwardly extended to 
classical negation.

The standard inference rules for classical negation do not have a 
reduction conversion.6 Indeed, when classical negation is added to the 
negation free fragment we get a nonconservative extension. In the pres-
ence of classical negation, we can derive theorems in the conditional lan-
guage that aren’t derivable without the negation rules. The most famous 
example is Peirce’s Law, ((A → B) → A) → A. In fact, this is crucial for 
the formalization of classical logic, as without classical negation, the 
inference rules (→I) and (→E) only give us the weaker intuitionistic 
conditional.

Put differently, the natural deduction rules for classical logic appear to 
violate the spirit of logical inferentialism. The introduction and elimina-
tion rules for the conditional aren’t alone sufficient to prove the class of 
theorems in the →-fragment of the language. That is, they aren’t suffi-
cient to determine the conceptual content of the classical conditional. For 
that classical negation is required.

Dummett, Prawitz, and other intuitionists have argued that the noncon-
servativeness of classical negation shows that the classical inference rules 
fail to fix a conceptual content at all. Classical negation, they conclude, 
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is semantically dysfunctional. That leads to a revisionary inferentialism 
where the harmony constraint points in favor of intuitionistic negation. 
However, classical logicians have pointed out a number of problems with 
the revisionary argument. First, the argument relies on the assumption 
that the conceptual content of a logical expression is determined by the 
inference rules for that connective alone, what Paoli calls operational 
meaning. In contrast, an inferentialist who is willing to accept a form 
of semantic holism could accept that connectives only acquire their con-
tent in the context of a full system of logical connectives, Paoli’s global 
meaning.7 Second, even if classical negation fails to satisfy the harmony 
constraint, it doesn’t follow that intuitionistic negation is the only alter-
native. And third, it turns out that the nonconservativeness of classical 
negation depends on formal properties of the proof system in question. 
This third objection points to a more severe limitation with nonconserva-
tiveness as a constraint on logical expressions.

In a sequent calculus system, the inference rules for connectives is given 
in a multiple conclusion form. An operational rule in sequent calculus 
has a finite set of premise sequents Γ1 ⇒ '1, . . . , Γn ⇒ 'n and a conclu-
sion sequent Γ ⇒ ', where Γ, ' are finite multisets of formulas. The 
operational rules for the classical conditional and negation can then be 
presented as follows:
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It is easy to see that in the presence of the standard structural rules (iden-
tity, weakening, contraction), (L→) and (R→) are sufficient to prove 
Peirce’s Law.8 In fact, every classical consequence in the →-fragment is 
derivable using the rules.

In the sequent calculus system, there is a counterpart to the reduction 
conversions and normalization of natural deduction. One shows that the 
conclusion of a proof that uses the cut rule,
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can be obtained in a way that does not use the cut rule. Let us say that a 
rule *

S S
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*

is admissible in a sequent system if and only if: the premiss sequents 
S1, . . . , Sn are derivable, then the conclusion is derivable. The standard 
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proofs that cut is admissible rely on the following type of reduction con-
versions, which are the counterparts of reduction conversions:9
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Showing that cut is admissible in a sequent system without it is a stan-
dard technique for obtaining conservative extension results for sequent 
systems. Cut admissibility, or elimination, theorems are the sequent ana-
logues of normalization theorems in the natural deduction setting. Cut is 
distinguished in many sequent systems as the only rule in which a connec-
tive disappears. If a sequent that is derivable with cut is derivable without 
cut, then it is derivable using rules in which formulas and connectives do 
not disappear, moving from premiss to conclusion. The cut admissibil-
ity theorem entails the separation property as a corollary. So, in a mul-
tiple conclusion sequent system, the addition of classical negation with its 
standard operational rules is a conservative extension of the →-fragment, 
unlike in the natural deduction case.

It should be clear that conservativeness depends on the choice of proof 
system. There are logical expressions whose addition in a sequent calculus 
yields a conservative extension but whose addition in natural deduction, 
with corresponding rules, yields a nonconservative extension. What is more, 
by allowing multiple conclusions in natural deduction, it is also possible to 
formalize classical negation and conditional with the separation property.10

This raises an important question about which formal framework for 
inference rules best captures a given inferential practice. It is true that 
introducing sets (or multisets) of conclusions is a further complication, 
but it is not one that lacks a philosophical interpretation. In fact, Restall 
(2005) has provided an account of multiple conclusion sequents that is 
potentially a good fit with logical inferentialism. On this interpretation, 
derivable sequents provide information about norms of assertion and 
denial: a derivable sequent

A A B Bn m1 1, ... , , ... ,⇒

says that one cannot coherently assert all the antecedent formulas while 
denying all the succedent formulas. We then get corresponding interpre-
tations of the operational rules presented above. The rule (R¬), for exam-
ple, encodes a norm saying that if one cannot assert all the members of Γ 
and A while simultaneously denying every member of ', then one cannot 
assert all the members of Γ while simultaneously denying ¬A and every 
member of '. If we simplify by dropping the auxiliary formulas, it says 
that if you cannot assert A, then you cannot deny ¬A.
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While some philosophers have objected to the use of multiple conclu-
sion sequent systems (Dummett 1991, 40–41; Tennant 1997, 319–320; 
and Steinberger 2011b), we think that the inferentialist still has reason 
to adopt them.11 Additionally, although much of the focus of Brandom 
(1994) is on assertion, including both assertion and denial in the descrip-
tion of the inferential role of expressions can accommodate much of 
Brandom’s view.

The stakes for the inferentialist are greater than just the conservativeness 
of classical negation. Many connectives are only conservative given certain 
assumptions about the structural properties of the proof system. Once the 
inferentialist can vary the structural properties of the proof system to cap-
ture different inferential practices, well-behaved connectives might prove 
problematic, and ill-behaved connectives might become legitimate.

3. Practice and Parameters

For a second example of structural properties, we can stick with the con-
ditional. Recall the standard inference rules for the intuitionistic con-
ditional, (→I) and (→E). There are structural properties built into the 
(→I) rule we would like to highlight. The rule is hypothetical—that is, 
it allows us to discharge assumptions. Hypothetical rules are governed 
by discharge policies, in particular that in an application of (→I), one 
discharges 0 or more occurrences of an assumption A. That leads to two 
special cases of (→I), vacuous and multiple discharge respectively.
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In the leftmost derivation, (→I) is applied without discharging any copies 
of the antecedent A, while the rightmost derivation discharges multiple 
copies of A. These special discharge policies are not logically idle. With-
out the former we cannot derive A → (B → A) in the →-fragment, and 
without the latter we cannot derive (A → (A → B)) → (A → B). It should 
be clear, therefore, that (→I) and (→E) only axiomatize the intuitionistic 
conditional if the discharge policies are permitted.12

The reduction conversions are also affected by the presence of the 
special discharge policies.13 Suppose that the proof 30 in the unreduced 
proof example above has two occurrences of A that are discharged by 
(→I). Then, in the reduced proof, there will be two copies of 31 in the 
resulting proof, one for each assumption of A that is being replaced.

We said that the discharge policies were implicit in the natural deduc-
tion system. They are implicit in the sense that they are not notationally 
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marked. For our purposes, it will be easier to work with sequent calcu-
lus systems, in particular the multiple conclusion rules (L→) and (R→) 
 displayed above. In addition to these rules and the axioms, A ⇒ A, 
standard sequent calculus systems have structural rules that correspond 
roughly to the discharge policies in natural deduction:14
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The topmost rules—antecedent and succedent weakening—correspond 
to vacuous discharge of assumptions, while the bottommost rules— 
antecedent and succedent contraction—correspond to multiple discharge 
of assumptions.15

These structural rules reflect features of inferential practices, and there 
are practices in which these rules may not be appropriate.16 An inferen-
tial practice in which the rules (RK) and (LK) do not reflect the struc-
ture of the practice is suggested in the motivating comments of relevant 
logicians, such as Anderson and Belnap (1975).17 A community might 
require that, in a good argument, all the premises are used in a substan-
tive way in obtaining the conclusion(s). There can be no idle premises. If 
we are trying to formalize the inferential practice of this community, we 
should not use the weakening rules, which permit inferences rejected by 
the community.18

Similarly, there are examples of inferential practices that, arguably, 
reject the rule of contraction. One example is the geometers of the early 
twentieth century.19 The geometers were concerned to mark how many 
times they appealed to certain assumptions, evaluating arguments differ-
ently depending on how many times the assumptions were used. It is a 
small step of idealization to a community that requires that whenever an 
argument uses an assumption multiple times, the assumption has to be 
made multiple times, which is to say that they reject the structural rules 
(LW) and (RW). Another example is supplied by Barker (2010). Barker 
argues that the phenomenon of free choice permission is best understood 
by appeal to the distinction between connectives that emerges when con-
traction is dropped. If he is right, then contemporary English speakers, at 
least sometimes, engage in inferential practices best formalized without 
(LW) and (RW).

These examples show how the structural rules reflect aspects of an 
inferential practice. Different practices may require the adoption or rejec-
tion of different sets of structural rules.20 An inferential practice need not 
manifest the structural rules in an overt form. They may remain implicit 
in the practice, in the sense that no one explicitly engages in an inference 
whose form matches that of the rule. Still, an explicit regimentation of 
the practice may contain the rules. Since the presence or absence of the 
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structural rules results in different logics, the different conditionals make 
explicit different sorts of inferential practices.

One familiar consequence of dropping weakening and contraction 
is that classically equivalent operational rules become distinct. To stick 
with the conditional, consider the two following implicational connec-
tives � and S.
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The connectives � and S are equivalent in the presence of weakening 
and contraction. Indeed, they are just two variants of the classical con-
ditional. However, once we drop either of the structural rules, they come 
apart. A similar bifurcation happens for conjunction and disjunction. In 
general, the substructural logics allow for distinct context-sharing (addi-
tive) and context-independent (multiplicative) connectives.

The substructural systems also produce nonconservative extensions 
with connectives that are conservative in the fully structural systems. Cer-
tain connectives reintroduce structural rules, thereby allowing the deriva-
tion of new sequents in the original language. An example is conditionals 
defined by mixing the context-sharing and context-independent opera-
tional rules above. Suppose we have a system with � and S, but without 
contraction. We then extend the system with a new conditional, a:
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The new conditional a has the left-rule of � but the right-rule of S. 
The result is that, provided we have (LK) and (RK), we can derive a 
restricted version of (LW) where there is at least one succedent formula 
(B below):
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The presence of the restricted contraction rule will affect which sequents 
are derivable for the other conditionals. For example, suppose we have 
a sequent system with S and the weakening rules, but not the contrac-
tion rules. In the extension with a, we can derive the sequent ⇒ (A S 
(A S B)) S (A S B), which was underivable in the original system. 
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Similar nonconservative extensions with weakening can be produced by 
combining (R�) and (LS). The result is a conditional,`, that allows the 
reintroduction of a restricted version of weakening.21

Next, let us look again at Read’s connective bullet, •. The rules for 
bullet normalize, as Read indicates. The addition of bullet to, say, intu-
itionistic logic would result in inconsistency and so nonconservative 
extension. However, the derivation of inconsistency crucially uses con-
traction, or multiple discharge. It could be added to a non-contractive 
system in a conservative way. This is an instance of a broader point, 
made by Restall (2010), that the context of deducibility, which encom-
passes the structural rules, has far-reaching consequences for logical 
issues, such as conservative extension and definability. In substructural 
logics, the context of deducibility is modified from that of classical and 
intuitionistic logic.

One example that is sometimes held up as a counterexample to the 
claim that harmony implies conservative extension is the truth predi-
cate.22 While not a connective, there is some reason to think that the truth 
predicate is logical, accorded distinguished status along with identity, and 
the rules

A
T A

T A
A

TI TE( ) ( )

are invertible and seem harmonious. Adding these rules to classical arith-
metic, without any restrictions, results in inconsistency, and so noncon-
servative extension.23 In a noncontractive logic such as RW, one can add 
these rules without restriction to arithmetic nontrivially.24 As far as we 
know, the question of whether the extension is conservative remains 
open.25

Next, we will return to the example with which we started, tonk.
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In the presence of all the structural rules, neither bullet nor tonk can be 
added conservatively. As we have seen above, however, the inferentialist 
can salvage bullet through rejection of the structural rule of contraction. 
The question, then, is whether something similar is possible for tonk. In 
fact, there is another structural rule to discuss, namely cut. Ripley (2015) 
has argued that tonk is acceptable to the inferentialist provided that cut 
is rejected. Indeed, the addition of tonk to a system whose only rules are 
contraction and weakening, together with the axioms, will be conserva-
tive, although cut will not be admissible.

As with the other structural rules, cut corresponds to features of 
inferential practices. Cut is sometimes described as encoding the use of 
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lemmas in proofs. Something is proved once and cited as needed, without 
reproducing the proof of the lemma in the course of the reasoning. The 
inferential practice of classical mathematics, on one construal, would be 
well formalized using the cut rule.

Another example is supplied by Restall (2005). Taking the rule contra-
positively, Restall says, “It tells us that if A is undeniable in the context 
of [coherently asserting Γ and denying '] then it is coherent to assert 
A, provided that [asserting Γ and denying '] is already coherent.”26 On 
Restall’s view, cut codifies a certain sort of coordination of assertions and 
denials.27 If, by the rules of logic, A is undeniable in a given context, then 
it is coherently assertible in that context, and if A cannot be coherently 
asserted in that context, then it is undeniable.

One can imagine inferential practices in which assertion and denial are 
not coordinated in the way that Restall describes. Ripley motivates the 
failure of cut by appeal to the same bilateralist interpretation of sequents 
as Restall. On Ripley’s view, there is more leeway between assertion, 
denial, and claims that are out of bounds than on Restall’s view.28 
A claim being undeniable as a matter of logic in a given, coherent con-
text does not thereby mean the claim is coherently assertible in that 
context, and similarly, an unassertible claim is not forced to be deni-
able. There can be gaps between the assertible and the undeniable and 
between the undeniable and the unassertible. On this view, assertion 
and denial each split into strict and tolerant forms, which interact in 
interesting ways. It appears, then, that the presence or absence of cut, 
as admissible or primitive, also codifies different norms at play in infer-
ential practices.29

We will close this section echoing a point made by Ripley (2013b). 
If all one wants in one’s choice of sequent system is a guarantee of con-
servative extension, then cut should not be taken as a primitive rule. 
Provided that formulas from the premises of a rule do not disappear in 
the conclusion, then extension of the system with rules for new connec-
tives will be conservative, since any newly derivable sequent will have an 
occurrence of the new connective in it. If formulas disappear in the con-
clusion of a rule, however, one will not have this assurance, as demon-
strated by Wansing’s super-tonk.30 Admissible rules may not be preserved 
under extension, whereas a primitive rule of a system will be preserved. 
When cut is not a primitive rule, one may be in the position of having 
cut admissible in the system prior to extension but no longer admissible 
post-extension. Whether the loss of cut is a major problem will depend 
on one’s interpretation of sequents and views about logical consequence, 
such as whether cut is a primitive rule of the system, and whether cut 
admissibility is a part of the harmony constraint for sequent systems. We 
bring up these questions to emphasize that cut is another parameter of 
inferential practice that should be specified when considering what one 
wants in harmony. We now turn to issues of proof-theoretic structure.



128 Ole Hjortland and Shawn Standefer

4. Distribution and Structure

Classical negation provides motivation to adopt multiple conclusion 
sequents, as it is difficult to add to a single-conclusion system with a 
conditional in a harmonious way.31 Multiple conclusions can be seen as 
an enrichment of the single conclusion sequent structure. There are other 
forms of structure with which one can enrich sequents. In this section, we 
will motivate one sort of enrichment in a substructural setting.

In the previous section, we presented context-sharing (additive) and 
context independent (multiplicative) forms of rules for implication. The 
distinction extends to other connectives, and we present the rules for con-
junction here, the disjunction rules being straightforward duals.
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In intuitionistic and classical logic, where we have all the structural rules, 
the additive and multiplicative are equivalent, in the sense that both

A B A B A B A BD D⇒ ∧ ∧ ⇒  and

are derivable.32 When either of weakening or contraction is dropped, the 
two connectives come apart, in the sense that one of the two sequents will 
not be derivable.

Consider a community that uses a conditional, but does not permit 
vacuous introduction and so rejects weakening. The community encoun-
ters conjunction and disjunction, understood according to their additive 
rules, and adopts them. A sequent system that represents their inferen-
tial situation uses the conditional, additive forms of conjunction and 
disjunction, with the rules above, and contraction, but not weakening. 
The resulting system is known to have cut admissibility, but the law of 
distribution is not derivable.33

A B C A B A C∧ ∨ ⇒ ∧ ∨ ∧( ) ( ) ( )

This system yields the positive fragment of the relevant logic R minus 
distribution.34

There is an intuition that if additive disjunction and conjunction are to 
mean the same thing in the substructural setting as in the classical, then 
they should obey distribution. After all, the additive rules yield distribu-
tion in the presence of contraction and weakening. This intuition has 
motivated some to add a primitive rule of distribution.35
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It is not clear that this is open to the inferentialist. It can spoil normaliza-
tion, and it does not fit neatly into the dichotomy of introduction and 
elimination rules, while clearly not being a structural rule. We will briefly 
look at three ways of responding to this issue.

The first is to maintain that the additive rules alone determine the 
meaning of conjunction and disjunction, and that is insufficient to secure 
distribution. So, additive conjunction and disjunction do not obey distri-
bution. The fact that they distribute in classical logic is a side effect of the 
structural rules, rather than the meaning determined by the operational 
rules.36 While this view is open to the inferentialist, we will set it aside to 
look at some options that maintain the intuition that additive conjunc-
tion distributes over additive disjunction.

An alternative response begins by noting that the problem with deriv-
ing distribution is that one is restricted as to what additional assumptions 
are available for use in the (L∨) step, or (∨E) in natural deduction. The 
response then is to adopt a natural strengthening of the additive disjunc-
tion elimination rule.37 According to this rule, one is permitted to freely 
use side premises in the subproofs for (∨E) that the major premiss dis-
junction depends upon.38

This system enjoys normalization and permits the derivation of dis-
tribution. The strengthened form, however, results in a logic properly 
stronger than (positive) R but still weaker than classical logic. The differ-
ence between the two rules is whether they permit the use of formulas in 
(∨E) that depend on the same assumptions as the disjunction. In classical 
logic, there are no restrictions on what side premises are used in (∨E), but 
in the substructural setting the added flexibility matters.

The third response takes the view that distribution should be derivable 
for the target vocabulary and it secures this by enriching the sequent sys-
tem with additional structural connectives governed by their own struc-
tural rules.39 In the basic sequent systems we have been discussing, the 
comma is the only structural connective. Once the distinction between 
additive and multiplicative connectives becomes important, as in sub-
structural logics, it is natural to see them as reflecting different structural 
features of inferential practices. Let us then add to the sequent system a 
structural connective, “;”, in addition to the comma. The two structural 
connectives can be governed by different sets of structural rules. In par-
ticular, the comma, but not the semicolon, obeys (LK) and (RK), and 
both obey (LW) and (RW). The connective rules are changed to reflect 
the differing roles of these structural elements, with the conditional and 
multiplicative conjunction going with semicolon and conjunction going 
with comma, as in the following examples.40
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A sequent system for positive R using two structural connectives enjoys 
cut admissibility and permits the derivation of distribution.41

The question this option raises for the inferentialist is whether the new 
structural element can be understood in terms of inferential practices. 
The two structural elements are different ways of combining premises 
(or conclusions).42 The semicolon is an intensional way, appropriate when 
one is extracting information from a conditional via modus ponens. The 
comma, on the other hand, is extensional, appropriate for simply pool-
ing information from some premises.43 The inferentialist can understand 
these structural connectives in terms of practices, and their addition can 
secure some of the desired formal properties, such as cut admissibility, 
for certain logics.

The third response uses an idea that we will discuss further, namely 
enriching the basic proof-theoretic structure. For the remaining discus-
sion, we will turn to systems for classical logic, focusing on extensions 
with modal vocabulary.

5. Modality and Structure

We have, so far, considered systems in which some of the fundamental 
structural rules have been dropped. These properties are important for 
normalization, cut admissibility, conservative extension, and harmony. 
In this section, we will look at enriching sequent systems with additional 
structure.

Modal connectives provide initial motivation for additional structure. 
There are a wide variety of modal logics, but it is notoriously difficult to 
provide satisfactory proof systems for them. One recalcitrant example is 
the modal logic S5. One of the first sequent systems for it was provided 
by Ohnishi and Matsumoto (1957). The modal rules are the following.
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) rule, 
Γ is 
A1, . . . , 
An, where Γ is A1, . . . , An. Ohnishi 
and Matsumoto point out that certain sequents are only derivable using 
cut. Their (R
) rule has a strong restriction on the form of side formulas, 
which requires one to introduce a box at one step in the derivation and 
then use cut on a side formula to insert a side formula that does not have 
the appropriate form.

Further, as Read points out, the natural deduction introduction and 
elimination rules for the box
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and diamond
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are intuitively not in harmony.44 While the (
E) rule permits the transition 
from 
A to A, (
I), in S4 and S5, does not let one move from A to 
A 
unless certain side conditions are satisfied. In Prawitz’s formulation, the 
side condition is that the open assumptions on which the premise of (
I) 
depends must be appropriately modal. The minor premiss of the rule (¡E) 
is subject to a similar restriction as (
I), namely, that all assumptions of 
the subproof, apart from the assumed A, are appropriately modal.

Although the S4 rules (
I) and (
E) normalize and their addition to 
classical logic is conservative, they are not in harmony.45 Both S4 and S5 
have the same rules for the modal operators, differing only in the side 
conditions. As Read (2008) puts the point, we should expect that since 
the logics are different, the rules should differ. The (
E) rule in harmony 
with the (
I) would be one weakened to reflect the side condition on 
(
I). On the possibility side, the (¡E) rule in harmony with the (¡I) rule 
would be one without a side condition, but this rule trivializes the modal-
ity, as well as being insensitive to the differences between S4 and S5, 
which share a (¡I) rule.

A natural diagnosis of the issue that arises both with natural deduction 
and sequent presentations of modal logic is that there are not enough 
parts to the basic structure, whether formulas or sequents, variations of 
which permit the distinctions needed by the different modal operators. 
A suggestion from Read is to enrich the system with additional structure, 
namely labels for worlds, A : i, and special formulas relating worlds, Rij.46 
The rules for ¡ then become the following.
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In the (¡E) rule, i z j z k, and no assumptions of minor premiss subproof 
are labelled with j besides the displayed ones. The rules for 
 can be 
adjusted similarly. These rules normalize. The distinction between S4 and 
S5 is brought out by the different rules added to the system for the Rij 
formulas.

One can add labels to sequents, along with special formulas indicating 
relations between the labels.47 As in the natural deduction system, differ-
ent modal logics are accounted for using structural rules on the relational 
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formulas. As an alternative to labels, one can enrich sequents in the direc-
tion of hypersequents, which we will now discuss.48 A hypersequent,

X Y X Yn n1 1⇒ ⇒| |... ,

is a multiset of sequents. Restall (2007) provides a hypersequent system 
for S5 that enjoys cut elimination.49

For the move to hypersequents to be appealing to the Brandomian, 
there needs to be a feature of the inferential practice that, in some sense, 
corresponds to the proposed structure. Such a feature has been sup-
plied by Restall. As we saw above, multiple conclusion systems can be 
understood in terms of norms of assertion and denial. The additional 
hypersequent structure can be understood in terms of consideration of 
alternatives.50 Derivable hypersequents present norms governing asser-
tion and denial in alternative situations.

The necessity rules are the following.
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In these rules,   is a hypersequent that contains the components dis-
played in the brackets. Cut is admissible in this system, unlike that of 
Ohnishi and Matsumoto (1957). The system has the subformula prop-
erty, so the addition of the S5 modalities to classical logic is a conserva-
tive extension.

S5 is one of the standard philosophical modal logics. The inferentialist 
has, we think, strong reason to provide a treatment of S5 that is accept-
able by her lights. This has proved difficult to do in the basic, unaug-
mented sequent setting.51 It shows up as the distinguished modal logic 
of Brandom’s incompatibility semantics.52 Brandom says, “S5 accord-
ingly has some claim to being the modal logic of consequence relations, 
whether material or logical.”53

The added structure of hypersequents permits the codification of norms 
dealing with assertion and denial in various alternatives. Consideration 
of alternatives is natural in inferential practices. The necessity operator 
makes explicit claims whose assertion or denial affects coherence across 
alternatives. Some claims can be denied in certain alternatives, in com-
bination with other assertions and denials. Some assertions and deni-
als have a modal force that extends beyond a particular hypothetical 
situation.

There can be different sorts of consideration of alternatives, which 
naturally motivates a further enrichment of the hypersequent structure. 
As investigated by Restall (2012), one can extend the hypersequents with 
another type of hypersequent separator, representing a second dimen-
sion to the consideration of alternatives. These two-dimensional systems 
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provide a representation of a practice of considering indicative and sub-
junctive alternatives.54 Further operators can be introduced to make 
explicit features of the inferential practice represented by this richer sys-
tem, such as a priori knowledge and actuality. These systems enjoy cut 
admissibility and so the addition of these operators is conservative.

A community’s inferential practices may broadly concern not just infer-
ence and assertion, but also consideration of hypothetical alternatives, as 
well as being sensitive to considerations not covered here, such as time 
and explicit concern with deontic statuses. The basic sequent structure 
may be sufficient for representing features of a relatively simple inferen-
tial practice, but a richer practice may need a richer sequent structure to 
adequately make the features of the practice explicit. We now turn to our 
general conclusions.

6. Conclusion

The rules for tonk present a problem for the logical inferentialist: there 
needs to be a principled way to separate the acceptable combinations of 
rules from the unacceptable. Dummett’s proposal, harmony between the 
introduction and elimination rules, offers a way to demarcate these col-
lections, provided there is some further analysis of harmony. Brandom 
tentatively endorses Dummett’s view, with respect to logical connectives, 
although it appears that harmony is merely a means to the end of secur-
ing conservative extensions.55

What we have argued is that the concept of harmony has several 
parameters that need to be settled to apply the concept. The very notion 
of a problem case depends upon this. As we saw above, classical negation 
appears to be a problem when single conclusion sequents and natural 
deduction are under consideration, but it is fine in multiple conclusion 
frameworks. Further, the connective bullet can be added conservatively 
in a contraction-free framework. Indeed, if cut is up for grabs, then even 
tonk can be embraced by the inferentialist. These observations point to 
a more general dynamic. If structural rules are dropped, then standard 
connectives that can be added conservatively when all structural rules 
are present may yield nonconservative extensions, depending on the for-
mulation of the rules. Even the conditional, which sits at the heart of 
Brandomian inferentialism, makes explicit different material inferences 
depending on the structural rules.

The move to a substructural setting brings with it distinctions between 
previously equivalent connectives. We noted the well-known fact that a 
form of the distribution law for conjunction and disjunction is underiv-
able with the additive rules. One response to this is to enrich the proof 
system with additional sequent structure. This move will be appealing 
to the inferentialist if one can understand the addition in terms of fea-
tures of an inferential practice. The addition can be so understood: the 
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additional structural connective captures an additional way to combine 
premises. Substructural logics can be sensitive to which premises were 
used in a derivation in a way that classical logic is not. The richer infer-
ential setting of substructural logic motivates the addition of a richer 
sequent structure.

Mirroring the structure of inferential practice in sequent structure is 
not restricted to substructural logics. Modal logics naturally motivate an 
enrichment of natural deduction and sequent structure. Hypersequent 
structure can be understood in inferential terms, namely the consider-
ation of alternatives. A richer inferential practice, one involving consid-
erations of different alternatives, temporal relations, or explicit deontic 
or epistemic evaluation, could call for the use of additional or different 
sequent structure. The richer sequent structure suggests a path to making 
explicit the relevant features of the target inferential practice.56

Notes
 1 The notation is our own.
 2 Harmony is typically viewed as ensuring that the elimination rules do not 

outstrip the introduction rules. The converse relation, that the introduction 
rules do not outrun the elimination rules, is sometimes called stability. Stabil-
ity and similar concepts have been the focus of much recent work on logical 
inferentialism. See Pfenning and Davies (2001), Jacinto and Read (2016), and 
Dicher (2016) for further discussion.

 3 See Read (2000) and Steinberger (2011a).
 4 See Gentzen (1935) and Prawitz (1965).
 5 See Read (2000; 2010).
 6 There are many ways of formalizing classical negation. One could add any of 

the following rules to the rules for intuitionistic negation:
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 7 See Paoli (2003) for discussion of the distinction between global and opera-
tional meaning.

 8 The structural rules will be introduced in the next section.
 9 The proof of Gentzen (1935) uses these types of conversions with a strength-

ening of cut. 
See Negri et al. (2001) or Bimbó (2015) for proofs using reduction conver-

sions on cut.
10 Cf. Read (2000), and Francez (2014c).
11 For a treatment of assertion and denial in a single-conclusion natural deduc-

tion setting, see Smiley (1996), Rumfitt (2000), or Francez (2014b). See 
Humberstone (2000) for further discussion.

12 Although in the presence of other connectives, that might change. Consider 
for instance the following derivation.

.



Inferentialism, Structure, and Conservativeness 135

A B

A B A

A B
A

B A

[ ]
∧

→
→ →

2 1

1

2

[ ]

( )

( )

( )

13 See Francez (2014a) for details on the reduction conversions involved when 
vacuous discharge is disallowed.

14 See Negri et al. (2001, chap. 8) for more on the correspondence.
15 Here we follow Restall (2000), and other logicians in the tradition of com-

binatory logic, in using the labels “K” and “W” for weakening and contrac-
tion, respectively.

16 See also Paoli (2002) for an overview of different motivations for dropping 
structural rules.

17 Lance and Kremer (1996) motivate a related logic of relevant commitment 
entailment, on Brandomian inferentialist grounds.

18 As an aside, we note that dropping structural rules, particularly weakening, 
has reper- cussions for incompatibility-based inferentialism. Suppose that one 
introduces a connective, ⊥, into the language to mark when some premises 
are incompatible. A natural axiom for it to obey is the following: ⊥ ⇒ ∅. In 
the presence of (RK), ⊥ entails everything. One can define a negation using 
this and the conditional: ¬A is A → ⊥. The negation of A is then guaranteed 
to be incompatible with A, in the sense that the following will be derivable.
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Cutting on the ⊥ axiom followed by an application of (RK) yields that incom-
patible formulas, here contradictory formulas, entail everything, giving sets 
of incompatible premises a distinctive inferential role. This fact is exploited, 
under a different presentation by Brandom (2008) and Peregrin (2015). It is 
an underlying assumption of their approaches that incompatibility persists 
through the addition of premises, which is a form of weakening. In some 
substructural settings, such as the relevant logic R, one can adopt the view 
that the conditional makes explicit moves from premises to conclusions while 
denying that sets of incompatible premises have a distinctive, explosive role. 
A modified definition of incompatibility entailment is needed for such sub-
structural settings.

In addition to weakening, cut and contraction are built into the structural 
assumptions of incompatibility semantics. See, for example, Brandom (2008, 
137). If either of cut or contraction is unavailable, other complications may 
be needed, but we leave this open here.

19 The details are supplied by Pambuccian (2004).
20 There are further structural rules one can distinguish, such as permutation, 

by taking structures on each side of the sequent separator to be sequences or 
more general structures, but we will focus on contraction, weakening, and 
cut.

21 See Hirokawa (1996), Humberstone (2007), and Rogerson (2007) for 
more on rules that permit the derivation of structural rules in substructural 
contexts.
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22 See Read (2000). For a dissenting view, see Steinberger (2011a).
23 The truth predicate needs a theory of syntax to supply sentence names, and 

we are here taking that theory to be arithmetic.
24 See Restall (1992) or Petersen (2000).
25 Depending on the rules governing the syntactic theory and negation, the addi-

tion of the truth predicate and the syntactic theory to pure logic may be non-
conservative in a noncontractive logic.

26 Restall (2005, 196–197).
27 We are treating assertion and denial as aspects of an inferential practice, fol-

lowing Brandom (1994, 206), who says, “For asserting and inferring are 
two sides of one coin; neither activity is intelligible except in relation to the 
other.”

28 See Cobreros et al. (2011) and Ripley (2013a, 143–144) for discussion.
29 One might, following French (2016), wonder about the identity sequents, A 

⇒ A. After all, the starting points of derivations are, in a broad sense, struc-
tural features. If one thinks it is sometimes coherent to assert and deny the 
same sentence, then, given the interpretation of sequents in terms of assertion 
and denial, identity sequents will not generally be acceptable.

We note that French considers a different interpretation of sequents, due to 
Malinowski, than we consider here.

30 The rules for super-tonk, provided by Wansing (2006), are the following.
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34 See Thistlewaite et al. (1988) for details.
35 This is the route adopted by Anderson and Belnap (1975).
36 See Paoli (2007; 2014) and Hjortland (2014) for discussion.
37 See Prawitz (1965), Charlwood (1981), and Giambrone and Urquhart (1987). 

We omit the rule since it requires either a lengthy side condition or the use of 
subscripts on formulas, conventions for which would take more explanation 
than is justified by the point at hand.

38 We focus on the natural deduction system, since it is easier to give a feel 
for the rule strengthening. In the sequent system, the strengthening is imple-
mented through the use of a restricted weakening rule that lessens the impact 
of the context-sharing features of the additive disjunction rules.

39 See Belnap (1982), Read (1988), or Slaney (1990) for examples.
40 We omit general statements of the rules, as that would require some further 

notational details that would take us a bit afield.
41 See Belnap et al. (1980) or Dunn and Restall (2002) for more.
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42 This view is elaborated by Slaney (1990).
43 These structural elements can nest, so it would be more correct to say that 

they are ways of combining structures, or bunches, of formulas.
44 Read (2008).
45 See Prawitz (1965) and Medeiros (2006).
46 See Read (2008).
47 Negri (2005).
48 For discussion of the relative philosophical merits of the use of labelled formu-

las, see Poggiolesi (2009), Humberstone (2011, 111–112), and Read (2015).
49 Poggiolesi (2008) also provides a hypersequent formulation of S5. See Bed-

narska and Indrzejczak (2015) for a survey of the area.
50 Restall (2012).
51 See Poggiolesi (2011), especially chap. 1, for discussion.
52 See Brandom (2008, 141–175).
53 Brandom (2008, 139), the original is bolded for emphasis, which we omit here.
54 See Lance and White (2007) and Restall (2012) for more on the consideration 

of alternatives.
55 We say “tentatively,” since Brandom registers some criticisms of Dummett’s 

view. See, e.g., Brandom (2000, 72–76).
56 We would like to thank Greg Restall, Rohan French, and Kai Tanter for dis-

cussion and comments on earlier versions of the material. Shawn Standefer’s 
research was supported by the Australian Research Council, Discovery Grant 
DP150103801.
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