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Abstract
Mares and Goldblatt (The Journal of Symbolic Logic, 71(01), 163–187, 2006) pro-
vided an alternative frame semantics for two quantified extensions of the relevant
logic R. In this paper, I show how to extend the Mares-Goldblatt frames to accommo-
date identity. Simpler frames are provided for two zero-order logics en route to the
full logic in order to clarify what is needed for identity and substitution, as opposed
to quantification. I close with a comparison of this work with the Fine-Mares models
for relevant logics with identity and a discussion of constant and variable domains.

Keywords Relevant logic · Mares-Goldblatt frames · Identity

One of the motivating intuitions behind relevant logics is that necessary truths, even
logical truths, need not be implied by all formulas.1 This intuition is meant to extend
beyond propositional logics to include identity. After all, if p→ (p→p) is not valid,
why should p → (t = t) be? There are plausible axiom systems for relevant logics
with identity that do not have p → (t = t) as a theorem. There is then a question of
models for such axiom systems. Such models would have to avoid validating obvious
irrelevancies, such as p → (t = t), while maintaining some of the logical behavior
of identity, such as the substitution of identicals.

One of the distinctive applications of identity in relevant logic is Dunn’s relevant
predication.2 There is an intuitive difference between saying of Mount Taranaki that
it is in New Zealand and saying of Mount Fuji that it is such that Mount Taranaki is

1For good overviews of relevant logics, see [13] and [3]. For overviews of recent work in the field see [24]
and [4]. For more in depth treatments, see [1, 2, 38, 41], and [30].
2For more on relevant predication, see Dunn [9–11] and Kremer [25, 26].
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in New Zealand. The predicate “is such that Mount Taranaki is in New Zealand” does
not really involve its object, as opposed to “is in New Zealand”, which is a paradigm
of an object involving predicate. Dunn defines relevant predication as

(ρxA(x))a =Df ∀x(x = a → A(x)).

Relevantly predicating A(x) of a is saying that being identical to a implies having
the property A(x). True relevant predications establish more of a connection between
their subject and predicate than standard predications. While Mount Fuji may be such
that Mount Taranaki is in New Zealand, something being Mount Fuji intuitively falls
short of implying the location of Mount Taranaki.

Of importance for the theory of relevant predication is the fact that there are
different formulations of the substitution axiom for identity, a conjunctive form,

A(s)& s = t → A(t),

and an iterated conditional form,

A(s) → (s = t → A(t)).

The iterated conditional form, it turns out, does not sit well with the relevance intu-
itions, as argued by Dunn [9]. Hence, I will focus on the conjunctive form here.
Mares [29] shows that allowing substitution into the scope of a conditional in the
conjunctive substitution axiom has serious consequences for the theory of relevant
predication, and so he considers a restricted form of the conjunctive substitution
axiom.3 Kremer [27] discusses motivations for different axiomatizations of relevant
identity. As is apparent from this work, there is much to explore regarding identity in
relevant logics. Mares [32] explores connections between the relevant biconditional
and identity. Øgaard [35] looks at substitution of identicals in relevant logics.

There has been some work on models for quantified relevant logics with and with-
out identity. The pioneering work of Mares [29] provided models for a range of
relevant logics with identity and quantifiers, building on the work of Fine [15, 19].
The Fine models for quantified relevant logics, and consequently the Fine-Mares
models for relevant identity, have not found widespread adoption within the relevant
logic community.4 Brady [5, 6] provided a kind of algebraic semantics for a weak
relevant logic with quantifiers. There has not been an extension of Brady’s semantics
to deal with identity.

Priest [37, ch. 24] develops constant domain models for quantified relevant logics,
as well as the extension with identity. Priest uses the Tarskian truth condition that the
truth of every instance suffices for the truth of the universal. Priest provides a tableau
system that is sound and complete for his models, rather than a Hilbert-style axiom
system like the other authors mentioned above.

3The restricted and unrestricted forms of the substitution axiom are, respectively, (I3) and (I4) below.
4See Brady [7] for some criticisms of Fine’s models, and see Logan [28] for discussion and defense of
Fine’s models. See Goldblatt [20] for a conservative extension result using Fine’s models.
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Mares and Goldblatt [33] provided alternative models for quantified relevant log-
ics, focussing on a pair of logics extending R, and Goldblatt and Kane [22] used
similar techniques to provide models for a range of relevant and substructral logics
with propositional quantification.5 Mares [31] provides a philosophical interpretation
of the framework. Mares and Goldblatt equip standard Routley-Meyer models with a
set of admissible propositions, which are used to provide a non-Tarskian truth condi-
tion for the universal quantifier. The truth condition is non-Tarskian in the sense that
the satisfaction by all assignments need not suffice for the truth of the universal.

In this paper I will show how to obtain models for logics of identity extending
the relevant logic R.6 I will begin by providing some formal background on R and
its frame semantics. The logics of identity differ on the strength of their substitution
axioms, following the pattern of [29]. I will then show how to enrich Routley-Meyer
models for R to interpret identity, using ideas from the Fine-Mares models. I will
then incorporate some ideas from [33] to provide models for a strengthened logic
of identity. Following this, I will briefly sketch the additions needed for quantifiers,
as developed by Mares and Goldblatt and show how to incorporate identity into the
models for quantification.7 Finally, I will close by discussing some salient differences
between the models for identity presented here and the Fine-Mares models.

1 Background

The formulas are built up as follows, where Var is a set of variables, Con a set of
constants, and Terms the union of Var and Con.8

A ::= F t1, . . . , tn | t | ∼A | (A&B) | (A → B)

The set of atoms will be denoted by At. I will take A ↔ B to be defined as (A →
B)& (B →A), A∨B as ∼(∼A&∼B), A◦B as ∼(A→∼B), and ∃xA as ∼∀x∼A.
To cut down on parentheses, negation will bind tightest, followed by conjunction and
disjunction.

The logic under consideration will be in the framework FMLA, i.e. a set of for-
mulas, the theorems.9 Initially, the logic of interest will be the logic R, to whose
zero-order fragment I will add identity axioms to obtain the logics R= and R=

sub.
Following that, quantifiers will be added to the language and the quantified relevant
logic of interest will be QR, which is the focus of [33]. The logic R has the following

5Goldblatt [21] develops admissible proposition frames for (classical) quantified modal logics. Chapter 6
of that work presents cover semantics as another approach to the semantics of quantified R.
6The restriction to R is to connect with the work of [33] on quantified relevant logics. The axioms and
frame and model conditions for identity do not seem to rely on proprietary features of R, but it is beyond
the scope of this paper to explore identity in the context of other logics.
7Ferenz [14] has developed a different approach to incorporating identity into Mares-Goldblatt models.
8Var and Con are assumed to be disjoint, both countable, and Var infinite.
9Humberstone [23, 103ff.]
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axioms and rules, where ‘⇒’ in the rules is used to mark off the premises from the
conclusion in the rules.

(A1) A → A (A10) (A → (B → C))→
(B → (A → C))

(A2) A&B → A, A&B → B (A11) ∼∼A → A

(A3) (A → B)& (A → C) → (A → B &C) (A12) (A→∼B)→(B→∼A)

(A4) A → A ∨ B, B → A ∨ B (A13) t
(A5) (A → C)& (B → C) → (A ∨ B → C) (A14) A ↔ (t → A)

(A6) A& (B ∨ C) → (A&B) ∨ (A&C) (A15) (A → (B → C))↔
((A ◦ B) → C)

(A7) (A → B) → ((B → C) → (A → C))

(A8) (A → B) → ((C → A) → (C → B)) (R1) A, A → B ⇒ B

(A9) (A → (A → B)) → (A → B) (R2) A, B ⇒ A&B

While this section is concerned just with the logic R, there are a few notions,
such as the notion of a theorem, that will be used in the context of R as well as its
extensions below. A proof of a formula A in a logic L is a sequence of formulas, each
of which is either an axiom of L or follows from earlier members of the sequence by
a rule of L. A formula A is a theorem of a logic L, 
L A, iff there is a proof of A in
the logic L. Let us now turn to the basic frames.

I will begin with the basic frames for the zero-order logic of R before enriching
these frames to interpret identity in later sections. I will use the following definitions
for the heredity ordering and the compositions of the ternary relation.

– a ≤ b =Df ∃x ∈ O Rxab

– Rabcd =Df ∃x(Rabx &Rxcd)

– Ra(bc)d =Df ∃x(Raxd &Rbcx)

All Routley-Meyer frames considered in this paper will be frames for the logic R. I
will define the frames in steps, beginning with frames for the propositional logic and
then proceeding to the zero-order frames.

Definition 1 (Routley-Meyer frame) A Routley-Meyer frame, F is a quadruple
〈K, O,∗ , R〉, where K �= ∅, O ⊆ K , ∗ : K �→ K such that a∗∗ = a, and R ⊆ K3,
satisfying the following conditions.

– a ∈ O & a ≤ b ⇒ b ∈ O.
– ≤ is reflexive, transitive, and antisymmetric.
– a ≤ b ⇒ b∗ ≤ a∗.
– d ≤ a &Rabc ⇒ Rdbc.
– Rabc ⇒ Rbac.
– Rabcd ⇒ Ra(bc)d .
– Raaa.
– Rabc ⇒ Rac∗b∗.
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Definition 2 (Zero-order Routley-Meyer frame) A zero-order Routley-Meyer frame
G is a quintuple 〈K, O,∗ , R, I 〉, where 〈K, O,∗ , R〉 is a Routley-Meyer frame and
the domain I �= ∅.

Definition 3 (Zero-order Routley-Meyer model) A zero-order Routley-Meyer model
M is a pair 〈F, V 〉, where F is a zero-order Routley-Meyer frame and V is an
interpretation function such that

– V (P ) : In �→ ℘(K),
– V (c) ∈ I , for c ∈ Con, and
– for a, b ∈ K , if a ≤ b and a ∈ V (P )(i1, . . . , in), then b ∈ V (P )(i1, . . . , in).

A model M is built on a frame F iff M is 〈F, V 〉, for some V .
An assignment f : ω �→ I is a function from the variables to the domain, also

written Iω below.

As suggested by the definition of assignment, there will, following Mares and
Goldblatt, be a canonical ordering on the countable set of variables, which permits
us to slide between them and natural numbers.

Following Mares and Goldblatt, for t ∈ Terms, define Vf (t) as follows.

Vf (t) =
{

V (t) t ∈ Con
f (t) t ∈ Var

The valuation V can be extended to a satisfaction relation, �V , according to the
following clauses.

– f, a �V P t1, . . . , tn iff a ∈ V (P )(Vf (t1), . . . , Vf (tn))

– f, a �V t iff a ∈ O

– f, a �V A&B iff f, a �V A and f, a �V B

– f, a �V A → B iff ∀bc(Rabc& f, b �V A ⇒ f, c �V B)

– f, a �V ∼A iff f, a∗ ��V A

We can define the truth set for A on V and f as |A|Vf = {a ∈ K : f, a �V A}.
Each formula defines a function |A|V : Iω �→ ℘(K), defined as |A|V (f ) = |A|Vf .
It will be useful to write V (P )(t1, . . . , tn)(f ) for V (P )(Vf (t1), . . . , Vf (tn)), espe-
cially when changes of assignment are being considered more. Once propositional
functions are considered below, the former notation will be more substantive, as a
notation for propositional functions. I will put a � A iff f, a �V A for all f .

A formula A is satisfied in a model M by assignment f iff for all a ∈ O, f, a �V

A. A formula A holds in a model M iff for all a ∈ O, a � A. A formula A is valid
in a frame F iff A holds in all models M built on F . A formula A is valid in a class
F of frames iff A is valid in F for each F ∈ F. A closed formula A is valid, |=R A

iff it is vaild in the class of all zero-order Routley-Meyer frames.
For a formula A, say that assignments f and g agree on the free variables of A iff

for all n, if xn is free in A, then f (n) = g(n). I will record a fact here that is clear
from the definition of satisfaction.
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Lemma 1 (Locality Lemma) If f and g agree on the free variables of A, then
|A|Vf = |A|Vg .

At this point in the paper, there are no bound variables, but this lemma remains
true once quantifiers, and bound variables, are added.

A version of the Heredity Lemma holds for our models.

Lemma 2 (Heredity Lemma) If a ≤ b and f, a �V A, then f, b �V A

Proof The proof is a straightforward induction on the complexity of A.

Say that a set X ⊆ K is hereditary iff for all a, b ∈ K , if a ∈ X and a ≤ b, then
b ∈ X. It then follows that for all valuations V , all assignments f , and all formulas
A, |A|Vf is hereditary.

From the Heredity Lemma we can prove the Verification Lemma.

Lemma 3 (Verification Lemma) A formula A → B is satisfied in a model M by f

iff for all a ∈ K , f, a �V A only if f, a �V B.

The Verification Lemma is used extensively in proofs of Soundness. The cases of
the Soundness proof will not be presented here, as they would repeat material readily
available.

Theorem 1 (Soundness) If 
R A, then |=R A

Proof The proof is by a straightforward induction on the length of the proof ofA.

The proofs of Completeness in this paper use the techniques of Henkin-style
canonical model construction. As is usual, we need some definitions.

Definition 4 Let Γ and Δ be sets of formulas. Say that the pair (Γ, Δ) is L-
inconsistent iff there are A1, . . . , An ∈ Γ and B1, . . . , Bm ∈ Δ such that 
L

(A1 & · · · &An) → (B1 ∨ · · · ∨ Bm).
The pair (Γ, Δ) is L-consistent iff it is not L-inconsistent.

Definition 5 (Theories) A set of formulas Γ is a L-theory iff for every formula B, if
(Γ, B) is L-inconsistent, then B ∈ Γ .

An L-theory Γ is prime iff A ∨ B ∈ Γ implies A ∈ Γ or B ∈ Γ .
A theory Γ is L-regular iff 
L A implies A ∈ Γ .

There are a couple of things to remark on in these definitions. First, these def-
initions are more general than is needed for this section, as we will reuse them in
later sections. In this section, the logic L is just R, while in later sections, it can be
extensions of R. Second, the definition of L-theory is equivalent to another common
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definition used in the context of relevant and substructural logics.10 The main point
of these definitions is the Prime Extension Lemma.

Lemma 4 (Prime Extension Lemma) If (Γ, Δ) is L-consistent, then there is a prime
L-theory Σ ⊇ Γ such that (Σ, Δ) is L-consistent.

Proof See [39, 92-95].

Next, we define the canonical model for the logic R. The ‘R-’ prefix will be omit-
ted, in what follows, to aid readability. Following [33], we will assume there are
countably many distinct constants in Con.

– K is the set of prime theories.
– O is the set of regular, prime theories.
– For a, b, c ∈ K , Rabc iff {A ◦ B : A ∈ a &B ∈ b} ⊆ c.
– a∗ = {A : ∼A �∈ a}.
– I = Con.
– For all c ∈ Con, V (c) = c.
– For n-ary predicate letters P , V (P )(c1, . . . , cn) = {a ∈ K : Pc1, . . . , cn ∈ a}.
The canonical frame, so defined, satisfies all the conditions for being a zero-order
Routley-Meyer frame, and the canonical valuation satisfies the conditions for being
a valuation. Next, for all f ∈ Iω, and Af is the closed formula

A[x0/f (0), x1/f (1), . . . , xn/f (n), . . .],
the result of carrying out the substitution of f (n) for xn, for all free variables of A.

Lemma 5 For all formulas A, Af ∈ a iff f, a �V A.
For all closed formulas A, A ∈ a iff a � A.

Theorem 2 (Completeness) For closed formulas A, if |=R A, then 
R A.

Proof Assume that it is not the case that
R A. Then the pair (R, {A}) is R-consistent,
where the first member of the pair is the set of theorems of R. In the canonical model,
there is a regular, prime theory a ∈ O such that A �∈ a, so a �� A. Therefore it is not
the case that |=R A.

10The other common definition of an L-theory is a set of formulas X such that both (i) if A ∈ X and
B ∈ X, then A&B ∈ X, and (ii) if A ∈ X and 
L A → B, then B ∈ X. These two definitions coincide
for a wide range of relevant logics. For condition (i), if A ∈ Γ and B ∈ Γ , then (Γ,A) and (Γ, B) are L-
inconsistent. It follows that 
L (C → A)& (C → B), for some conjunction C from Γ . Then from axiom
(A3) and (R1), 
L C → A&B, so (Γ,A&B) is L-inconsistent. Thus, A&B ∈ Γ . For (ii), suppose
A ∈ Γ and 
L A → B. It follows that (Γ,A) is L-inconsistent, so there is a conjunction C from Γ such
that 
L C → A. If 
L C → A and 
L A → B jointly suffice for 
L C → B, as they do in any relevant
logic extending B, then (Γ, B) is L-inconsistent. Therefore, B ∈ Γ , as desired.

The other direction of the equivalence is straightforward. Suppose X is an L-theory as defined in the
previous paragraph. Suppose (X,A) is L-inconsistent. Then there is a conjunction C of formulas from X

such that 
L C → A. Since all the conjuncts of C are in X, C ∈ X, by condition (i). From condition (ii),
A ∈ X, as desired.
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With the background for the relevant logic R and basic Routley-Meyer frames in
place, we can now turn to the primary topic of the paper, identity.

2 Zero-Order Identity

In this section, we will augment zero-order Routley-Meyer frames to obtain frames
and models appropriate for interpreting identity. We extend the language with a
binary predicate for identity, =. There are a few constraints on how this predicate can
be interpreted, which will be familiar to the reader of [29]. The interpretation needs to
be reflexive on the domain, at least over O, to deliver t = t , but it need not be every-
where reflexive, else p → t = t will be valid. It needs to be symmetric and transitive.
There will need to be constraints on how identity holding at a point relates to iden-
tity at the point’s star and how identities constrain valuations to ensure substitution is
sound.

The way that the constraints are formally met is to add to each frame a family
of indexed relations, ≈a , for a ∈ K , where ≈a ⊆ I × I . The indexed relations
are then required to satisfy several frame and model conditions corresponding to the
constraints. As we will see, these conditions are appropriate for identity that licenses
substitution of identicals in →-free formulas.

First, say that a point a is weakly symmetric in i, j iff if Vf (u) = i and
Vf (v) = j , then for each predicate letter P , a ∈ V (P t1, . . . , tn)(f ) iff a ∈
V (P s1, . . . , sn)(f ), where t� = s� if s� �∈ {u, v}, and where t� = u or t� = v if
s� ∈ {u, v}.

Definition 6 (Identity frames) A zero-order identity frame F is sextuple
〈K, O,∗ , R, I, {≈a}a∈K 〉, where the initial quintuple is a zero-order Routley-Meyer
frame and the family of relations obeys the following conditions.

(ID1) a ≤ b ⇒ ≈a ⊆ ≈b.
(ID2) If a ∈ O, then (i, i) ∈ ≈a .
(ID3) (i, j) ∈ ≈a ⇒ (j, i) ∈ ≈a .
(ID4) (i, j) ∈ ≈a & (j, k) ∈ ≈a ⇒ (i, k) ∈ ≈a .
(ID5) (i, j) ∈ ≈a & (j, k) ∈ ≈a∗ ⇒ (i, k) ∈ ≈a∗ .

To define a model, we need to coordinate the family of relations and the valuation.
For this, we define the notion of confomity.

Definition 7 (Conformity) A valuation V conforms to a Routley-Meyer frame with
identity iff for all f ∈ Iω, s, t ∈ Terms, a ∈ K ,

a ∈ V (=)(Vf (s), Vf (t)) iff (Vf (s), Vf (t)) ∈ ≈a .

Definition 8 (Identity models) A zero-order identity model M is a pair 〈F, V 〉,
where F is a zero-order identity frame, V is a valuation conforming to F and obeying
the conditions from the zero-order models, as well as the following two conditions.
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(ID6) If (i, j) ∈ ≈a , then a∗ is weakly symmetric in i, j .
(ID7) If Vf (u) = i, Vf (v) = j , a ∈ V (P t1, . . . , tn)(f ), and (i, j) ∈ ≈a , then a ∈

V (P s1, . . . , sn), where s� = t�, if t� �∈ {u, v}, and s� ∈ {u, v}, if t� ∈ {u, v}.

Conditions (ID1)–(ID4) are fairly straightforward. Conditions (ID5) and (ID6) cap-
ture a maximality intuition about the Routley star. According to this intuition, a∗
“asserts what [the point a] does not deny.”11 Formally, they yield the soundness
of substitution in the scope of negation, as one would expect. Finally, (ID7) is the
condition on valuations ensuring substitution of identicals for atomic formulas.

From this section forward, I will mostly be concerned with validity with respect
to a class of models, rather than with respect to a class of frames. A formula A holds
in a model M iff for all a ∈ O, a � A. A formula is valid in a class of models iff it
holds in all models in that class. A formula A is valid, |=R= A, iff A is valid in the
class of all zero-order identity models.

Using the definition of conformity, we can obtain the following derived satisfac-
tion condition for identity.

– f, a �V s = t iff (Vf (s), Vf (t)) ∈ ≈a

To see this, note that f, a �V s = t iff a ∈ V (=)(Vf (s), Vf (t)), which by
conformity, is equivalent to (Vf (s), Vf (t)) ∈ ≈a .

The Heredity Lemma extends to the zero-order identity models.

Lemma 6 If a ≤ b and f, a �V A, then f, b �V A.

Proof The new case is when A is s = t . This is covered by condition (ID1).

To axiomatize the logic, we will add the following axioms to R to obtain the logic
R=.

(I1) t = t

(I2) s = t → t = s

(I3) A& s = t → A′, where A is →-free, and A′ is the result of substituting one or
more occurrences of s for t in A.

Note that s = t & t = u → s = u follows from the axioms for R=, as can be seen
from [29, 12]. I will say that a formula A is a theorem of R=, 
R= A iff there is a
proof of A from the axioms and rules of R=.

Theorem 3 (Soundness) If 
R= A, then |=R= A.

Proof The proof is by induction on the length of the proof of A. The new cases are
those involving (I1)–(I3).

For (I1), by (ID2), for a ∈ O, (i, i) ∈ ≈a . For any t ∈ Terms, (Vf (t), Vf (t)) ∈
≈a , so f, a �V t = t . Therefore, |=R= t = t .

11See [12, 332].
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For (I2), suppose f, a �V s = t . So, (Vf (s), Vf (t)) ∈ ≈a . By (ID3),
(Vf (t), Vf (s)) ∈ ≈a , so f, a �V t = s. Therefore, s = t → t = s holds in M on
f , by the Verification Lemma.

For (I3), we proceed by induction on the →-free formula A. We will suppose that
Vf (s) = i and Vf (t) = j .

Subcase: A has the form P t1, . . . , tn. Assume f, a �V P t1, . . . , tn and f, a �V

s = t , so a ∈ V (P t1, . . . , tn)(f ) and (i, j) ∈ ≈a . By (ID7), a ∈ V (P s1, . . . , sn)(f ),
where s� = t�, if t� �∈ {s, t} and otherwise s� may be either of s or t . So, f, a �V A′,
as desired.

Subcase: t = u. Assume f, a �V t = u and f, a �V s = t . Then
(Vf (t), Vf (u)) ∈ ≈a and (Vf (s), Vf (t)) ∈ ≈a . By (ID4), (Vf (s), Vf (u)) ∈ ≈a ,
so f, a �V s = u, as desired. The other possibilities for this subcase are similar.

Subcase: ∼P t1, . . . , tn. Assume f, a �V ∼P t1, . . . , tn and f, a �V s = t , so
f, a∗ ��V P t1, . . . , tn. So, a∗ �∈ V (P t1, . . . , tn)(f ). Suppose f, a ��V ∼Ps1, . . . , sn,
where s� = t�, if t� �∈ {s, t} and otherwise s� may be either of s or t . So,
a∗ ∈ V (P s1, . . . , sn)(f ). Since (i, j) ∈ ≈a , a∗ is weakly symmetric in i, j by
(ID6), a∗ ∈ V (P t1, . . . , tn)(f ), and so f, a ��V ∼P t1, . . . , tn, contradicting the
assumption. Therefore, f, a �V ∼Ps1, . . . , sn, which is A′, as desired.

Subcase: ∼(t = u). Assume f, a �V ∼(t = u) and f, a �V s = t . Then (i, j) ∈
≈a and f, a∗ ��V t = u, so (Vf (t), Vf (u)) �∈ ≈a∗ . Suppose f, a ��V ∼(s = u).
Then f, a∗ �V s = u. So, (i, Vf (u)) ∈ ≈a∗ , which together with (j, i) ∈ ≈a ,
from (ID3), yields (j, Vf (u)) ∈ ≈a∗ from (ID5). But then f, a∗ �V t = u, and so
f, a ��V ∼(t = u), contradicting the assumption. Therefore, f, a �V ∼(s = u). As
with the identity subcase, the other possibilities are similar.

Subcases: ∼∼B, B &C, ∼(B &C). These are handled by the inductive hypothe-
sis.

Since the desired conclusion is obtained in all subcases, I conclude that axiom (I3)
is valid.

To prove Completeness, we adapt the canonical model construction of Section 1.
The definitions for the canonical model are carried over, using R= rather than R, with
the following additional definition.

– (s, t) ∈ ≈a iff s = t ∈ a.

It remains to define the family of relations and show that the canonical model obeys
conditions (ID1)–(ID7).

Lemma 7 The canonical model for R= obeys the frame conditions (ID1)–(ID5).

Proof For (ID1), suppose a ≤ b and (s, t) ∈ ≈a . It follows that s = t ∈ a and there
is a c ∈ O such that Rcab. So s = t ∈ b, and so (s, t) ∈ ≈b.

For (ID2), suppose a ∈ O. As 
R= s = s, s = s ∈ a, by definition, so (s, s) ∈ ≈a .
For (ID3), suppose (s, t) ∈ ≈a . Then s = t ∈ a. From axiom (I2), t = s ∈ a, so

(t, s) ∈ ≈a .
For (ID4), note that 
R= s = t & t = u → s = u. Suppose (s, t) ∈ ≈a and (t, u) ∈

≈a . Then s = t & t = u ∈ a, whence s = u ∈ a so (s, u) ∈ ≈a .
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For (ID5), suppose (s, t) ∈ ≈a and (t, u) ∈ ≈a∗ . Suppose that (s, u) �∈ ≈a∗ . Then
s = u �∈ a∗, so ∼(s = u) ∈ a. As s = t ∈ a, by (I3), ∼(t = u) ∈ a. But then,
t = u �∈ a∗, so (t, u) �∈ ≈a∗ , contradicting the assumption. Thus, (s, u) ∈ ≈a∗ .

Lemma 8 The canonical model for R= obeys the model conditions (ID6)–(ID7) and
conforms to the canonical frame.

Proof For (ID6), suppose Vf (u) = s, Vf (v) = t , (s, t) ∈ ≈a and a∗ ∈
V (P t1, . . . , tn)(f ). Suppose that a∗ �∈ V (P s1, . . . , sn)(f ), where the s�’s and t�’s
satisfy the conditions for weak symmetry in s, t . So, ∼(P s1, . . . , sn)

f ∈ a. By
assumption, Vf (u) = s, Vf (v) = t , and (s, t) ∈ ≈a , so u = v ∈ a. By (I3), we then
have (∼P t1, . . . , tn)

f ∈ a, so (P t1, . . . , tn)
f �∈ a∗, contradicting the assumption.

Therefore, a∗ ∈ V (P s1, . . . , sn)(f ).
For the other direction in weak symmetry, suppose Vf (u) = s, Vf (v) = t ,

(s, t) ∈ ≈a , a∗ �∈ V (P t1, . . . , tn)(f ), and a∗ ∈ V (P s1, . . . , sn)(f ), where the s�’s
and t�’s satisfy the conditions for weak symmetry in s, t . So, (∼P t1, . . . , tn)

f ∈ a.
By assumption, Vf (u) = s, Vf (v) = t , and (s, t) ∈ ≈a , so (u = v)f ∈ a. By
(I3), we then have (∼Ps1, . . . , sn)

f ∈ a, so (P s1, . . . , sn)
f �∈ a∗, contradicting the

assumption. Therefore, a∗ �∈ V (P s1, . . . , sn)(f ).
For (ID7), suppose Vf (u) = s, Vf (v) = t , (s, t) ∈ ≈a and a ∈

V (P t1, . . . , tn)(f ). Suppose that a �∈ V (P s1, . . . , sn)(f ), where the s�’s and t�’s
satisfy the conditions of (ID7). Then (P t1, . . . , tn)

f ∈ a and (u = v)f ∈ a, but
(P s1, . . . , sn)

f �∈ a. As (u = v&P t1, . . . , tn)
f ∈ a, by (I3), (P s1, . . . , sn)

f ∈ a,
which is a contradiction. Therefore, a ∈ V (P s1, . . . , sn)(f ), as desired.

For conformity, note that a ∈ V (=)(Vf (s), Vf (t)) iff (s = t)f ∈ a, which is
equivalent to (Vf (s), Vf (t)) ∈ ≈a .

Lemma 9 (Satisfaction Lemma) For all formulas A, for all assignemnts f , Af ∈ a

iff f, a �V A.

Proof The proof is by induction on the structure of A. The non-identity atomic
case and the connective cases are all as usual, so we will do the identity case.
(s = t)f ∈ a iff sf = tf ∈ a

iff (Vf (s), Vf (t)) ∈ ≈a

iff a ∈ V (=)(Vf (s), Vf (t))

iff f, a �V s = t

Theorem 4 (Completeness) For closed formulas A, if |=R= A, then 
R= A.

Proof Suppose that is is not the case that 
R= A. Construct the canonical model for
R=. As A is not a theorem, there is a regular, prime theory a such that A �∈ a. From
the satisfaction lemma, we then have a �� A, as A is closed. Therefore, it is not the
case that |=R= A.

The axioms for R= are sound and complete with respect to the zero-order identity
models. The substitution axiom, (I3), has a restriction, which one may want to drop.
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One can validate the unrestricted axiom, provided an additional model condition is
adopted. Stating that condition will require the addition of some of the machinery
used by Mares and Goldblatt in their frames for quantified relevant logic, so we will
turn to that now.

3 Mares-Goldblatt Proposition Frames

Mares and Goldbatt enrich zero-order Routley-Meyer frames with sets of admissible
propositions and propositional functions in order to interpret the quantifiers. Proposi-
tions can do some work even when quantifiers are not in the language, and I will use
them to provide the model conditions for a strengthened substitution axiom, which
drops the restriction of (I3) that A be →-free:

(I4) A& s = t →A′, where A′ is the result of substituting one or more occurrences
of s for t in A.

Let R=
sub be the set of theorems resulting from adding all instances of (I4) to the

axioms of R=.
In the context of Routley-Meyer frames, propositions are hereditary sets of points,

i.e. if a ∈ X and a ≤ b, then b ∈ X. This is in contrast to Kripke frames for
classical modal logic, in which propositions can be arbitrary sets of points. The set of
propositions in a frame will have to obey some closure conditions. For a given frame,
we define − and� as operations on ℘(K), for all X, Y ⊆ K .

– −X = {a ∈ K : a∗ �∈ X}
– X � Y = {a ∈ K : ∀b ∈ K∀c ∈ K((Rabc& b ∈ X) ⇒ c ∈ Y )}
Note that if X and Y are hereditary sets on a frame, then so are −X, X � Y , X ∪ Y ,
and X ∩ Y .

A propositional function on a frame is a function φ : Iω �→ Prop, mapping
assignments to propositions. Following Mares and Goldblatt, I will use ‘φ’ and ‘ψ’
for propositional functions. Operations on propositional functions will be defined
pointwise as in Table 1.

Now we can define propositional Routley-Meyer frames.

Definition 9 A propositional Routley-Meyer frame is an octuple,

〈K, O,∗ , R, I, {≈a}a∈K, Prop, PropFun〉,

where the first six components comprise a zero-order identity Routley-Meyer frame,
Prop is a non-empty set of hereditary subsets of K , and PropFun is a non-empty set

Table 1 Pointwise operations
on propositional functions (φ ∩ ψ)f = φf ∩ ψf

(φ � ψ)f = φf � ψf

(−φ)f = −(φf )
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propositional functions from assignments to Prop, satisfying the following closure
conditions.

CProp O ∈ Prop, and if X, Y ∈ Prop, then X ∩ Y ∈ Prop, X � Y ∈ Prop, and
−X ∈ Prop.

CTee φO ∈ PropFun, where φO(f ) = O, for all f ∈ Iω.
CImp If φ, ψ ∈ PropFun, then φ � ψ ∈ PropFun.
CConj If φ, ψ ∈ PropFun, then φ ∩ ψ ∈ PropFun.
CNeg If φ ∈ PropFun, then −φ ∈ PropFun.

Looking forward to the extension with quantifiers, to define models from proposi-
tional Routley-Meyer frames, we will need the valuations V to assign atomic formu-
las propositional functions. The propositional function assigned to an atomic formula
by a valuation V is the defined as V (P t1, . . . , tn)(f ) = V (P )(Vf (t1), . . . , Vf (tn)),
making good on the comment that the former notation would receive a more substan-
tive interpretation. We will say that a valuation V is admissible iff V (P t1, . . . , tn) ∈
PropFun, for all atomic formulas. When concerned with identity, as we are here, one
also needs to coordinate the relations ≈a and PropFun, but that is guaranteed by the
conformity condition.

Definition 10 A propositional Routley-Meyer model M is a pair 〈F, V 〉, where F is
a propositional Routley-Meyer frame and V is an admissible valuation that conforms
to F

The definition of a model ensures that the truth sets of atomic formulas are all
hereditary. In fact, in a given model, |A|Vf ∈ Prop, for any formula A and there is
φA ∈ PropFun such that |A|Vf = φA(f ).

Lemma 10 Let A be an arbitrary formula. In any propositional Routley-Meyer
model, |A|V ∈ PropFun. So, |A|Vf ∈ Prop.

Proof The proof is similar to that of corollary 4.1 in [33]. The atomic case for the
Ackermann constant is handled by CTee and the atomic cases for identities and
non-identity atomic formulas are handled by the definition of model. The cases for
complex formulas are handled by CConj, CNeg, and CImp.

The Heredity Lemma follows from the fact that the closure conditions on Prop
and PropFun preserve the property of being hereditary. The conformity condition
properly coordinates the satisfaction condition with the propositional function for
identity as well, as demonstrated by the following argument.

(Vf (s), Vf (t)) ∈ ≈a iff a ∈ V (=)(Vf (s), Vf (t))

iff a ∈ V (s = t)(f )

The first line is the conformity condition, and the second equivalence is justified by
the definition of propositional function.

The point of using Prop and PropFun at this stage is to provide a frame condition
that yields the soundness of (I4). For this, we need further definitions and notation.
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Definition 11 (Conflation) For f, g ∈ Iω, f ∼i
j g iff for all n ∈ ω,

– f (n) = g(n), or
– f (n) �= g(n) and either f (n) = i and g(n) = j or f (n) = j and g(n) = i.

For a given frame, for a ∈ K , say a is (i, j)-conflating iff for all φ ∈ PropFun, for
all f, g ∈ Iω, (f ∼i

j g ⇒ (a ∈ φ(f ) ⇔ a ∈ φ(g))).12

We can then define a strong propositional Routley-Meyer frame as a propositional
Routley-Meyer frame that additionally satisfies the condition

CFullSub if (i, j) ∈ ≈a then a is (i, j)-conflating.

A little more scaffolding is needed for Soundness.

Definition 12 Let B[x1/t1, . . . , xn/tn] be the result of simultaneous substitution of
the term ti for xi in B, provided ti is free for xi .

A skeleton of a formula A is a formula B, whose unbound terms are only free vari-
ables, x1, . . . , xn, each of which occurs only once, such that there are terms t1, . . . , tn
such that A = B[x1/t1, . . . , xn/tn].13

For f ∈ Iω and j ∈ I , define f [j/n] as
f [j/n] = 〈f 0, f 1, . . . f (n − 1), j, f (n + 1), . . .〉

and f [j1/n1, . . . , jm+1/nm+1] as
f [j1/n1, . . . , jm+1/nm+1] = (f [j1/n1, . . . , jm/nm])[jm+1/nm+1],

where the ni are distinct

At this point, no terms are bound and all terms are free for all others. This phrasing
was chosen to accommodate the addition of quantifiers and variable binding. We will
record a fact about skeletons and syntactic substitution.

Lemma 11 If A′ is the result of substituting zero or more occurrences of term s for
a term t in A, provided s is free for t in A, then there is a formula B that is a skeleton
for both A and A′

Next, we record a fact about skeletons and satisfaction.

Lemma 12 Suppose B is a skeleton for A, where B[xn1/t1, . . . , xnm/tm] = A.
Suppose that Vf (ti) = ji , for each i such that 1 ≤ i ≤ m. Then

f [j1/n1, . . . , jm/nm], a �V B iff f, a �V A.

12This terminology is based on that of Ripley [40], although the logical features are different. I thank
Lloyd Humberstone for suggesting the term “conflation” in this context.
13Since function symbols are not in the language, this definition coincides with that of a matrix from
Priest [36, 17], minus the stipulation that the variables are increasing order. Since I will not deal with
function symbols here, I will not further address the possible divergence between the two notions. Thanks
to Dave Ripley for pointing out Priest’s term to me.
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Corollary 1 Suppose B is a skeleton for A, where B[xn1/t1, . . . , xnm/tm] = A.
Suppose that Vf (ti) = ji , for each i such that 1 ≤ i ≤ m. Then

φB(f [j1/n1, . . . , jm/nm]) = φA(f ).

Let us turn to Soundness.

Theorem 5 If 
R=
sub

A then |=R=
sub

A.

Proof Most of the cases are handled as before, although there is a new case, (I4),
which subsumes (I3).

Suppose that f, a �V A& s = t . So, f, a �V A and f, a �V s = t . Suppose
Vf (s) = i and Vf (t) = j , so it follows that (i, j) ∈ ≈a . By the condition CFullSub,
a is (i, j)-conflating. Suppose that f, a ��V A′. By Lemma 11, there is a formula B

that is a skeleton for both A and A′. To keep notation simple, suppose that A and A′
differ on exactly one term occurrence, so A = B[xn1/t1, . . . , xnm/tm, xnm+1/t] and
A′ = B[xn1/t1, . . . , xnm/tm, xnm+1/s].

Let g be the assignment f [j1/n1, . . . , jm/nm], where Vf (ti) = ji , for 1 ≤ i ≤ m.
As f, a �V A, by Lemma 12, g[i/nm+1], a �V B. By Lemma 12, g[j/nm+1], a �V

B iff f, a �V A′. So, a �∈ φB(g[j/nm+1]) while a ∈ φB(g[i/nm+1]). Further, we
have g[i/nm+1]∼i

j g[j/nm+1], by definition. But, this contradicts the fact that a is
(i, j)-conflating. Therefore, f, a �V A′, as desired.

We now turn to Completeness.

4 Completeness for Zero-Order Propositional Models

The proof of Completeness uses the techniques of [33]. We carry over the canonical
model construction of the previous section, so that the set K of points is the set of
prime R=

sub-theories, the set O is the subset of R=
sub-regular theories, and so on. We

make the following additions to incorporate propositions and propositional functions.
Note that the valuation clause or atomic formulas has been replaced.

– For closed formulas A, ||A|| = {a ∈ K : A ∈ a}.
– Prop = {||A|| : A is a closed formula}.
– For each formula A, φA : Iω �→ Prop is defined as φA(f ) = ||Af ||.
– PropFun = {φA : A is a formula}.
– For n-ary predicate letters P , V (P )(c1, . . . , cn) = ||Pc1, . . . , cn||.
For much of the proof, we can use the work of Mares and Goldblatt, as well as the
arguments of the previous section. The canonical frame satisfies conditions (ID1)–
(ID7). It remains to be verified that the condition CFullSub holds.

To show that the canonical model obeys CFullSub, it will be useful to prove a
small lemma on substitution.

Definition 13 ((s, t)-variants) Suppose that two formulas A and B have a common
skeleton C, A = C[x1/t1, . . . , xn/tn], and B = C[x1/s1, . . . , xn/sn]. A and B are
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(s, t)-variants iff for all i such that 1 ≤ i ≤ n, either ti = si , or ti �= si but both
ti ∈ {s, t} and si ∈ {s, t}.

Lemma 13 Suppose that A and B are (s, t)-variants. Then, 
R=
sub

A& s = t → B.

Proof Suppose that A and B are (s, t)-variants. Let C be a common skeleton such
that A = C[x1/t1, . . . , xn/tn], and B = C[x1/s1, . . . , xn/sn]. Let m1, . . . , m� be
the subscripts such that for 1 ≤ p ≤ � tmp �= smp and tmp = t . Let D =
C[x1/t ′1, . . . , xn/t ′n], where t ′r = s, if r is one of the mp’s, and t ′r = tr otherwise.
Let E = C[x1/t ′′1 , . . . , xn/t ′′n ], where t ′′r = r , if r is one of the m′

p’s, and t ′′r = t ′r
otherwise.

By (ID4), 
R=
sub

A& s = t → D, as D is A with some occurrences of s replacing
some occurrences t . By (ID4), 
R=

sub
D& s = t → E, as E is D with some occur-

rences of t replacing some occurrences s. From (A2), (R2), and (A3), it follows that

R=

sub
A& s = t → D& s = t , whence 
R=

sub
A& s = t → E, by (A7) and (R1).

Finally, note that E is B, so 
R=
sub

A& s = t → B, as desired.

Lemma 14 The canonical model for R=
sub obeys condition CFullSub.

Proof Suppose (i, j) ∈ ≈a . Then i = j ∈ a. Suppose a is not (i, j)-conflating, so
there is a φ ∈ PropFun such that for some f, g ∈ Iω such that f ∼i

j g, either

– a ∈ φ(f ) and a �∈ φ(g), or
– a �∈ φ(f ) and a ∈ φ(g).

Suppose a ∈ φ(f ) and a �∈ φ(g). From the definition of PropFun, there is a for-
mula A such that φ = φA. Without loss of generality, we can assume that A is a
skeleton of some formula. Then Af and Ag differ in so far as the latter has zero
or more occurrences of i where the former has j and zero or more occurrences
of j where the former has i. Then Af and Ag are (i, j)-variants. By the previous
lemma, 
R=

sub
Af & i = j → Ag . Since a ∈ φA(f ), a ∈ ||Af ||, so Af ∈ a. So,

Af & i = j ∈ a. We then have Ag ∈ a. This implies a ∈ ||Ag||, which implies
a ∈ φA(g), contradicting the assumption.

The argument for the other disjunct is similar. Therefore, we conclude the
canonical model obeys CFullSub.

That completes the condition check. Since the other conditions are verified by the
work of Mares and Goldblatt, we conclude that the canonical model is, in fact, a
R=

sub-model. Next, we need a lemma showing membership is truth.

Lemma 15 For all formulas A, and all assignments f , |A|Vf = φA(f ).

Proof For the base case, both the identity and non-identity atomic formulas are taken
care of by the definition of the model. The inductive cases are all handled by the
argument of lemma 9.6 of [33].

With that, we can claim Completeness.
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Theorem 6 For closed formulas A, if |=R=
sub

A, then 
R=
sub

A.

Let us take stock of what has been done so far. We have two zero-order logics
with identity, R= and R=

sub. These logics differ over the strength of the substitution
axiom, the restricted (I3) versus the unrestricted (I4), respectively. Models for these
two logics have been defined, and soundness and completeness have been shown.
We now add quantifiers to the language and consider properly first-order logics of
identity.

5 Quantified Relevant Logic

The quantified relevant logic of primary interest here is QR, as that is the focus of
[33]. It is obtained by adding the following axioms and rule to R.

(Q1) ∀xA → A[x/t], where x is free for t in A

(R3) A → B ⇒ A → ∀xB, where x is not free in A

As noted by [33, 182], the extensional confinement axiom,

(EC) ∀x(A ∨ B) → A ∨ ∀xB,

where x is not free in A, is not a theorem of QR. Adding it yields the stronger logic
RQ, which logic will not be considered further here. There are two first-order logics
of identity that will be considered, QR= and QR=

sub. The former is obtained by adding
(I1), (I2), and (I3) to QR, and the latter adds (I4) to QR=.

I will begin with the frames for QR. These will be propositional Routley-Meyer
frames without the family of binary relations and its attendant conditions but with
some additional closure operations on Prop and PropFun. First, there is one further
operation needed to handle quantification, defined by [33]. Define

� : ℘(℘(K)) �→
℘(K) for S ⊆ ℘(K), by

�
S =

⋃
{X ∈ Prop : X ⊆

⋂
S}.

We then define new operations on propositional functions for each n ∈ ω

(∀nφ)f =
�

j∈I

φ(f [j/n]).

Definition 14 A QR-frame F is a septuple 〈K, O, R,∗ , I, Prop, PropFun〉, where
the first five components comprise a zero-order Routley-Meyer frame, Prop is a non-
empty set of hereditary subsets of K , and PropFun is a non-empty set of functions in
Iω �→ Prop obeying the following conditions.

CProp O ∈ Prop, and if X, Y ∈ Prop, then X ∩ Y ∈ Prop, X � Y ∈ Prop, and
−X ∈ Prop.

CTee φO ∈ PropFun, where φO(f ) = O, for all f ∈ Iω.
CImp If φ, ψ ∈ PropFun, then φ � ψ ∈ PropFun.
CConj If φ, ψ ∈ PropFun, then φ ∩ ψ ∈ PropFun.
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CNeg If φ ∈ PropFun, then −φ ∈ PropFun.
CAll If φ ∈ PropFun, then ∀nφ ∈ PropFun, for each n ∈ ω.

A QR-model M is pair 〈F, V 〉 where F is a QR-frame and V is an admissible
valuation.

All but the last of these conditions on QR-frames were used in the definition of
propositional Routley-Meyer frames. The condition CAll is required to get a frame
for the quantificational logic QR as defined by Mares and Goldblatt.

Next, define the set of xn-variants of f as xnvf = {f [j/n] ∈ Iω : j ∈ I }.
The valuation V can be extended to a satisfaction relation, �V , by using the clauses
from the previous sections with the addition of the following clause for the universal
quantifier.

– f, x �V ∀xA iff there is X ∈ Prop such that a ∈ X and X ⊆ ⋂
g∈xvf |A|Vg .

The definitions of a formula A being satisfied in a model by an assignment, holding
in a model, being valid on a frame, being valid in a class of frames, and being valid,
in symbols |=QR A, are adapted in a straightforward way to the present context of
QR-frames.

Theorem 7 (Soundness and completeness) For all formulas A, 
QR A iff |=QR A.

Proof For proofs, see [33].

With that background in place, I will turn to the addition of identity to quantifica-
tion and models for QR=.

6 Models for Identity and Quantification

In this section, I will present models for QR= and prove Soundness and Complete-
ness. Following this, I will briefly discuss the adaptations needed to provide models
for QR=

sub.

Definition 15 A QR=-frame F is a propositional Routley-Meyer frame obeying the
following additional condition.

CAll If φ ∈ PropFun, then ∀nφ ∈ PropFun, for each n ∈ ω.

A QR=-model M is pair 〈F, V 〉 where F is a QR-frame and V is an admissible
valuation that conforms to F and obeys the following additional conditions.

CUnivSub If a ∈ (φs=t ∩ φ∀xnA)(f ), then there is X ∈ Prop such that a ∈ X and

X ⊆
⋂

g∈xnvf

φA′(g), where A is →-free and A′ is the result of substituting one or

more occurrences of s for t in A.
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CNegUnivSub If a ∈ φs=t (f ) and a∗ ∈ φ∀xnA′(f ), then there is X ∈ Prop such

that a∗ ∈ X and X ⊆
⋂

g∈xnvf

φA(g), where A is →-free and A′ is the result of

substituting one or more occurrences of s for t in A.

As before, the definitions of a formula A being satisfied in a model by an assign-
ment, holding in a model, being valid in a class of models, and being valid, |=QR= A,
are adapted to the present context in the straightforward way.

As should be clear from the definitions, a QR=-frame F can be viewed as either
a propositional Routley-Meyer frame satisfying the additional condition CAll or as a
QR-frame augmented with a family of binary relations {≈a}a∈K on I × I obeying
conditions (ID1)–(ID5). The two conditions on models, CUnivSub and CNegUnivSub,
are used in the proof of Soundness for QR=, along with the conditions of conformity,
(ID6), and (ID7). Following the proof of Soundness below, I will comment on them
further.

Next, I will prove soundness for QR= with respect to the class of all QR=-models.

Theorem 8 (Soundness) If 
QR= A, then |=QR= A.

Proof Mares and Goldblatt [33] show soundness for QR. It remains to show that
axioms (I1)–(I3) are valid. The proofs that axioms (I1) and (I2) are valid proceed as in
Section 2. There are two new subcases for the induction for (I3), namely when A is
of the form ∀xB and when A is of the form ∼∀xB.

Subcase: ∀xB. Suppose that f, a �V ∀xB and f, a �V s = t . We can suppose
that x �∈ {s, t}, as then the substitution would be vacuous and f, a �V ∀xB ′, as
B ′ = B. By Lemma 10, a ∈ (φs=t ∩ φ∀xB)(f ). By CUnivSub, there is X ∈ Prop

such that a ∈ X and X ⊆
⋂

g∈xvf

|B ′|Vg . This means that f, a �V ∀xB ′, as desired.

Subcase:∼∀xB. Suppose that f, a �V ∼∀xB and f, a �V s = t . We can suppose
that x �∈ {s, t}, as then the substitution would be vacuous and f, a �V ∼∀xB ′.
Assume f, a ��V ∼∀xB ′. Then f, a∗ �V ∀xB ′. By Lemma 10, a ∈ φs=t (f ) and
a∗ ∈ φ∀xB ′(f ). By CNegUnivSub, there is X ∈ Prop such that a∗ ∈ X and X ⊆⋂
g∈xvf

|B|Vg . But then, f, a∗ �V ∀xB, whence f, a ��V ∼∀xB, contradicting the

assumption. Therefore, f, a �V ∼∀xB ′, as desired.

As can be seen from the proof, the conditions CUnivSub and CNegUnivSub were
key to the universal and negated universal subcases for the soundness of axiom (I3).14

14The requirement of the conditions CUnivSub and CNegUnivSub for the soundness of (I3) suggests a
further restricted form of substitution that permits substitution only into the scope of formulas built out
of negation, conjunction, and disjunction, in particular excluding the universal quantifier. This division
is suggested by the models, as the universal quantifier is the only connective that appeals to Prop, but it
does not seem like an antecedently natural line to draw. This division might be more natural if one thinks
of the universal quantifier less like a generalized conjunction and more like a kind of necessity operator,
something that brings with it a degree of opacity.
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It is worth dwelling on these conditions. Without them, one might try to argue, by
induction, that, for a given a, if f, a �V s = t , then f, a �V A iff f, a �V A′. In
the universal quantifier case for ∀xB, one would be able to conclude, that for each
g ∈ xvf , a ∈ |B|Vg iff a ∈ |B ′|Vg . But this would hold only for the given a, falling
short of |B|Vg = |B ′|Vg , which would suffice for the desired conclusion.15 Instead,
one would only obtain the weaker

a ∈
⋂

g∈xvf

|B|Vg iff a ∈
⋂

g∈xvf

|B ′|Vg,

with no guarantee that there is a set X ∈ Prop with a ∈ X and X ⊆
⋂

g∈xvf

|B ′|Vg , as

⋂
g∈xvf

|B ′|Vg may fail to be in Prop.16

A bit of reflection on the models and the truth condition for the universal quan-
tifier reveals the issue. In the attempted argument given in the previous paragraph,
one can establish only that each x-variant of B holds at the point a. However, as
Mares and Goldblatt point out, the Tarskian truth condition, that a universally quan-
tified formula is true when every instance is true, is not sufficient, in general, for
the truth of the universally quantified formula. The attempted argument only deliv-
ers each instance, satisfying the Tarskian truth condition but falling short of the
Mares-Goldblatt condition for the truth of the universal.

The additional conditions, CUnivSub and CNegUnivSub, are needed to guarantee
that there are the requisite propositions to witness the truth of the universal quanti-
fier and negated universal quantifier. The set Prop of propositions is, in a sense, a
global feature of the model, in contrast to the local features reachable via the hered-
ity ordering; a proposition may contain points a and b that are incomparable in the
heredity ordering. While there may be points such that s = t holds at them, the truth
sets of ∀xRxs and ∀xRxt , in a model and assignment, can be largely disjoint. This is
similar to how the truth sets of their respective instances, as given by the range of x-
varying assignments, need not have much in common. It is for these reasons that the
existence of a proposition witnessing the truth of the former universal formula is no
guarantee that there will be a witnessing proposition for the latter. The case in which
one has a negated universal just compounds the issues, as the identity need not hold
at the star point under consideration.

The proof for Completeness is fairly straightforward, given what has gone before.
The canonical model construction does not need any new definitions from those of

15If, for each g ∈ xvf , |B|Vg = |B ′|Vg , then
⋂

g∈xvf

|B|Vg =
⋂

g∈xvf

|B ′|Vg . From the assumption of the

case, there is an X ∈ Prop with a ∈ X such that X ⊆
⋂

g∈xvf

|B|Vg . The latter identity then ensures that the

same X works for
⋂

g∈xvf

|B ′|Vg .

16As shown by lemma 4.5 of [33, 171], there are cases in which
⋂

g∈xvf

|B ′|Vg is guaranteed to be in Prop,

namely when one of I and Prop is finite, or when Prop is full, i.e. contains all hereditary subsets of K .
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the previous sections. For the verification that the frame satisfies the various con-
ditions, we can reproduce the arguments of earlier sections. The main addition is
verifying that the canonical model satisfies the conditions CUnivSub and CNegUni-
vSub. Before proving that, we will prove a lemma about universal propositions and
their instances.

Lemma 16 In the canonical model for QR=, ||(∀xnA)f || ⊆
⋂

g∈xnvf

φA(g).

Proof First, observe that xnvf = {g ∈ Iω : ∃c ∈ I (g = f [c/n])}.
From (Q1), ||(∀xnA)f || ⊆ ||A[xn/c]f ||, for all c ∈ I . But, A[xn/c]f = Af [c/n],

so by the observation
||(∀xnA)f || ⊆

⋂
g∈xnvf

||Ag||,

whence
||(∀xnA)f || ⊆

⋂
g∈xnvf

φA(g).

Lemma 17 The canonical model for QR= satisfies the conditions CUnivSub and
CNegUnivSub.

Proof For CUnivSub, suppose a ∈ (φs=t ∩ φ∀xnA)(f ), for →-free A. We need to

show that there is X ∈ Prop such that a ∈ X and X ⊆
⋂

g∈xnvf

φA′(g). Since a ∈

(φs=t ∩ φ∀xnA)(f ), a ∈ ||(s = t &∀xnA)f ||, so (s = t &∀xnA)f ∈ a. From (I3), it
follows that (∀xnA

′)f ∈ a. By Lemma 16,

||(∀xnA
′)f || ⊆

⋂
g∈xnvf

φA′(g).

As (∀xnA
′)f ∈ a, a ∈ ||(∀xnA

′)f ||, so ||(∀xnA
′)f || is the desired member of Prop.

For CNegUnivSub, suppose a ∈ φs=t (f ) and a∗ ∈ φ∀xnA′(f ), for →-free A′.
From the assumption, (s = t)f ∈ a and (∀xnA

′)f ∈ a∗. Suppose that a∗ �∈
||(∀xnA)f ||. Then, (∀xnA)f �∈ a∗. So, (∼∀xnA)f ∈ a. By (I3), it follows that
(∼∀xnA

′)f ∈ a. But then, (∀xnA
′)f �∈ a∗, so a∗ �∈ ||(∀xnA

′)f ||, which implies
a∗ �∈ φ∀xnA′(f ), contradicting an assumption. Therefore, a∗ ∈ ||(∀xnA)f ||. By
Lemma 16,

||(∀xnA)f || ⊆
⋂

g∈xnvf

φA(g).

Thus, ||(∀xnA)f || is the desired member of Prop.

With that lemma, we then claim Completeness for QR=.

Theorem 9 (Completeness) For all formulas A, if |=QR= A, then 
QR= A.
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Proof The proof is that of [33]. Suppose |=QR= A. It follows that in the canonical
model, Af ∈ a, for all a ∈ O and all f ∈ Iω. Let x1, . . . , xn be exactly the free
variables of A. Pick an assignment g ∈ Iω such that g(x1) = c1, . . . , g(xn) = cn,
where all the ci’s are distinct and none otherwise occur in A. Then Ag ∈ a, so

QR= Ag . It follows that 
QR= ∀x1 . . .∀xnA, so ∀x1 . . .∀xnA ∈ a, as a ∈ O. From
(Q1), A ∈ a, whence 
QR= A, as desired.

The conditions on QR=-models, CUnivSub and CNegUnivSub, may strike some as
unappealing, as there is an apparent intrusion of syntax into the model conditions. At
present, we do not see a way around this, provided the target logic is QR=. If one is
willing to strengthen the logic to QR=

sub, with the addition of (I4), then the situation is
different. Models for QR=

sub can drop CUnivSub and CNegUnivSub, instead using the
condition CFullSub. Call the QR=-models satisfying CFullSub strong QR=-models.
The logic QR=

sub is sound and complete with respect to the class of all strong QR=-
models.

Theorem 10 For all formulas A, |=QR=
sub

A iff 
QR=
sub

A.

Proof We will prove the new cases for (I4) the soundness direction. Assume f, a �V

A and f, a �V s = t . Let Vf (s) = i and Vf (t) = j , so (i, j) ∈ ≈a , and so
a is (i, j)-conflating. The first case is when A is of the form ∀xB. Suppose that
f, a ��V ∀xB ′. Then there is a formula C that is a skeleton for both ∀xB and ∀xB ′.
As in the proof of Theorem 5, we will assume B and B ′ differ on one term occur-
rence for notational simplicity, so B = C[xn1/t1, . . . , xnm/tm, xnm+1/t] and B ′ =
C[xn1/t1, . . . , xnm/tm, xnm+1/s]. Let g be the assignment f [j1/n1, . . . , jm/nm],
where Vf (ti) = ji for 1 ≤ i ≤ m. As f, a �V ∀xB, by Lemma 12, g[i/nm+1, a �V

∀xC. Again by Lemma 12, g[j/nm+1], a �V ∀xC iff f, a �V ∀xB ′. So,
a �∈ φ∀xC(g[i/nm+1]) while a ∈ φ∀xC(g[j/nm+1]). As a is (i, j)-conflating, we
have a contradiction, since g[i/nm+1]∼i

j g[j/nm+1]. Therefore, f, a �V ∀xB ′. The
case where A is of the form ∼∀xB is similar.

Nothing essentially new is needed the completeness proof, which piggybacks on
the work that has already been done. The proof that the canonical frame satisfies the
condition CFullSub is basically the same as in the earlier section, and similarly for
the model conditions.

To conclude this section, I will note that the axiom (EC), ∀x(A ∨ B) → A ∨ ∀xB

where x is not free in A, can be added to either QR= or QR=
sub. Models for those

logics can be obtained by adding the following model condition, provided by [33],

X\Y ⊆
⋂

g∈xnvf

|B|Vg ⇒ X\Y ⊆ |∀xB|Vf ,

for any formula B, any X, Y ∈ Prop, and any f ∈ Iω. Soundness and completeness
results can be obtained using the arguments similar to those of [33].
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7 Discussion

I have provided models for logics of identity over the base logic R, with and without
quantifiers. It is worth comparing the resulting models with those of Mares [29],
whose models are based on the models of Fine [19]. This leads to a rough distinction
between local and global features of the models. I will then close with a discussion
of constant and varying domain models for quantified relevant logics of identity.

There are several differences between the present models and the Fine-Mares mod-
els for identity. First are the differences, of which there are many, in the underlying
models for relevant logics. While I will not provide all the details of the Fine-
Mares models, leaving the interested reader to consult the original texts, there is one
difference I will discuss, namely the treatment of quantification. Fine’s approach
to quantification uses something like arbitrary objects and the Mares-Goldblatt
approach uses propositions.17 The truth condition for the universal quantifier in the
Fine-Mares models is the following.

a � ∀xB iff (∃a↑)(∃i ∈ Da↑ − Da)(τ(u) = i & a↑ � B[ux])
A universally quantified formula is true at a point a iff the point, a↑ is a point
whose domain, Da↑ extends that of a, Da , with a new object, i, that the interpreta-
tion τ assigns to the variable u. Whether a universal is true at a point a then requires
checking a single, special instance of the quantified formula at the point a↑.

To model identity, the Fine-Mares models use a family of binary relations on the
domain that may vary from point to point. These have several conditions on them,
analogs of (ID1)–(ID7).18 The differences in the models have some bearing on the
treatment of identity. Let us start with the treatment of (I3). The Fine-Mares models
do not need an additional condition to validate (I3) beyond the basic conditions on
the family of binary relations when quantifiers are in the language.

In Fine-Mares models, the truth of a universally quantified formula at a point
depends on features that are plausibly local to that point, namely its extended domain
points, and there is a condition in the Fine-Mares models that says that ≈a ⊆≈a↑.19
Because of this, there are no additional conditions needed in order to validate the
substitution of identicals in the scope of a universal quantifier, or a negated univer-
sal.20 In contrast, the truth of a universally quantified formula in the Mares-Goldblatt
models depends on a global feature of the model, namely the set Prop and the truth

17Fine [19] sketches an interpretation of the models that is close to the generic semantics of [16–18]
18Indeed, the conditions adopted in this paper were based on those used for the Fine-Mares models.
19The Fine-Mares models have an array of conditions relating ↑, →, the other parts of the model, including
the operation ↑ and the relation ≤, e.g. a ≤ b ⇒ a↑ ≤ b↑, which are global constraints on interactions
between these features of the models. There is more to say in for a full development of the local/global
distinction for Fine-Mares models, which would be worthwhile, but it is beyond the scope of this paper and
these remarks. I would like to thank an anonymous referee for pointing out the subtleties involved here.
20The interested reader is encouraged to look at [29, 14], in particular case 4 for axiom 13 in the proof of
theorem 3.1. Since in the Fine-Mares models, the truth of a universal at a point b is equivalent to the truth
of an instance in b↑, substitution in the scope of a universal quantifier is secured via substitution on that
instance. Substitution in the scope of a negated universal quantifier is similar, albeit involving interactions
between ↑,↓,≤, and −, which is used for the truth condition for negation.
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sets. Whether ∀xFxs and ∀xFxt hold at a point, at which s = t holds, depends on
the truth sets of all the instances of the quantified formulas, and those truth sets may
contain points at which s = t fails. While the truth sets for ∀xFxs and ∀xFxt over-
lap, by stipulation, they need not coincide. There needs to be additional conditions in
order to ensure that substitution of identicals in the scope of a universal quantifier is
sound.

Let us turn to (I4). The condition Mares places on the Fine-Mares models to
validate (I4) is the following.

CIdClosure For distinct i and j , if (i, j) ∈ ≈a , then a = i,j→
a .21

In this condition,
i,j→
a is “the smallest [point] containing a in which A(u) is true

if and only if A(v) is true, where ‘u’ refers to i and ‘v’ refers to j .”22 It is clear
why CIdClosure validates (I4): It says that if a point considers two objects identical,
then no formula can distinguish them at that point. The condition CFullSub likewise
ensures the validity of the substitution of identicals in arbitrary formulas, albeit by
placing a condition on assignments and PropFun.

Mares’s CIdClosure is, plausibly, a local condition, since verifying it requires
checking each point a to see whether it takes i and j to be the same and if so, check-

ing that the
i,j→
a = a. There will, of course, be consequences to

i,j→
a = a being

true that will reach beyond the point a, namely it will constrain the evaluation of
the antecedent and consequent of conditionals at other points, even if the identity
between i and j does not hold at those other points. CFullSub, by contrast, is plausibly
a global condition, as it places constraints on PropFun, rather than a local condition,
as with the Fine-Mares models.

A global condition along the lines of CFullSub seems like the only way to validate
(I4) in the Mares-Goldblatt models. An identity holding at one point needs to affect
the evaluation of formulas being evaluated at other points, possibly several steps
down a chain of R-related points, without requiring that the identity hold at the other
points. While we cannot explain all the differences between the Fine-Mares models
and the Mares-Goldblatt models in terms of a local-global distinction, the distinction
can give us some traction on important differences in how identity interacts with the
quantifiers.

To close, I will comment on one other feature of the models: The Mares-Goldblatt
models are constant domain models in the sense that the domain, I , is the same
from point to point.23 In contrast, the Fine-Mares models are sometimes criticized
for being varying domain models, in the sense that different points may have distinct
domains.24 To the extent that one sees the varying domains of the Fine-Mares models
as a problem, the Mares-Goldblatt models will be more attractive. Yet, care should
be taken in discussing constant domains in this context, as some issues arise.

21This condition is (VI.x′) in [29]. The name has been changed to match the conventions of this paper.
22Mares [29, 5].
23Mares [31] shows how to accommodate varying domains in Mares-Goldblatt frames.
24See Logan [28] for discussion of this varying domain objection.
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The Mares-Goldblatt models are constant domain, despite the fact that the (EC)
axiom, ∀x(A ∨ B) → A ∨ ∀xB, where x is not free in A, which is valid in constant
domain models for quantified intuitionistic logic, is not valid in Mares-Goldblatt
models.25 As noted, (EC) is an optional extra for Mares-Goldblatt models that can
be added to QR to obtain the logic RQ. (EC) is valid in the varying domain Fine-
Mares models. In models for relevant logics, (EC) does not neatly track the distinction
between constant and varying domain models. There is a further subtlety.

Once identity is in the language, there is a sense in which varying domains arise.
Let us call the domain, I , of a Mares-Goldblatt model the global domain. We can
then define a local domain, Ia , for each point a ∈ K , as follows. Let [i]a = {j ∈ I :
(i, j) ∈ ≈a}, and let Ia = {[i]a : i ∈ I & ∃j ∈ I ((i, j) ∈ ≈a)}. The local domain Ia

will be the set of non-empty sets [i]a . From the closure conditions on ≈a , if j ∈ [i]a
and k ∈ [i]a , then [j ]a = [k]a = [i]a . Following Goldblatt [21, 162], we can define
an existence predicate, E, as Et iff t = t . Existence claims will be true at a point (at
an assignment) just when the terms denote objects in the local domain equivalence
classes. When CFullSub is adopted, for i, j ∈ [k]a , A(i) will hold at a iff A(j) does.
There is more to explore regarding local domains, but the feature to focus on is that
the local domains can vary from point to point.26 This is true even when one is going
along the heredity ordering.27 If a ≤ b, then there may be an i such that [i]b ∈ Ib but
[i]a �∈ Ia . Additionally, one may have i and j such that [i]a �= [j ]a while [i]b = [j ]b.

The upshot is that local domains need not be constant. Proceeding along the hered-
ity ordering, points can recognize new objects, increasing their local domain over
their hereditary predecessors. They can also conflate objects that were previously dis-
tinct. This is so, even though the interpretation of names in Mares-Goldblatt models
does not change from point to point. This flexibility may provide a distinctive way for
the relevant logician to model and to respond to puzzles about contingent identity.28
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