
FAILURES OF γ

TORE FJETLAND ØGAARD1 AND SHAWN STANDEFER2,†

Abstract:
Since Meyer and Dunn showed that the rule γ is admissible in E, rele-
vantists have produced new proofs of the admissibility of γ for an ever
more expansive list of relevant logics. We show in this paper that this
is not cause to think that this is the norm; rather γ fails to be admissible
in a wide variety of relevant logics. As an upshot, we suggest that the
proper view of γ-admissibility is as a coherence criterion, and thus as a
selection criterion for logical theory choice.
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1. Hard work and a clean life

One of the more radical elements of the philosophy of relevant logics has been and
continues to be the rejection of the validity of disjunctive syllogism—the rule to the
effect that B is obtainable from ¬A together with A ∨ B, or equivalently given minimal
rules for negation, that B is obtainable from A together with ¬A ∨ B. Since the material
conditional A ⊃ B is definable as ¬A∨ B, the latter form, then, is merely modus ponens
for the material conditional.1 The relevant rejection of this, then, amounts to a flat out
rejection of the material conditional as a proper conditional. In Anderson and Belnap’s
playful style: “ ‘Material implication’ is not a ‘kind’ of implication, or so we hold; it
is no more a kind of implication than a blunderbuss is a kind of buss” [Anderson and
Belnap, 1962, 21].

The rule of modus ponens for the material conditional is known amongst relevant
logicians as the rule of γ, a name given to the rule in what was one, if not the, primum
movens of the enterprise of relevant logics, namely Ackermann [1956].2 Indeed, the
favorite logic of Anderson and Belnap—the logic E of entailment—is obtained from
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2 FAILURES OF γ

Ackermann’s logic Π′ of rigorous implication by simply dropping the rule γ. Even
though, then, γ fails to be a derivable rule of inference in E, the question whether γ is
admissible in E was raised as the first of several worth while open question in Ander-
son’s Some open problems concerning entailment: “it might still be the case, by a sort
of lucky accident, that whenever A and Ā ∨ B are both provable in E, then B is also.”3

Anderson noted, then, that since (a) and (b) below are logical theorems of E that so
would (c) be if γ was indeed admissible. In order to illustrate the two difficulties Ander-
son saw in proving γ to be admissible, Anderson displayed the following three logical
theorems of E:

(a) ¬(A→ A) ∨
(
¬(B→ C) ∨ ¬((A ∧C)→ D) ∨ ((A ∧ B)→ D)

)
(b) A→ A
(c) ¬(B→ C) ∨ ¬((A ∧C)→ D) ∨ ((A ∧ B)→ D)

(a) through (c) are indeed all logical theorems of E. However, Anderson seems to have
thought that if γ indeed was admissible, then (c) would follow from (a) and (b) in some
sense, but noted that (c) seems to require the distribution axiom, whereas neither of (a)
and (b) do.4 “Worse, there is no clear relation between the proofs of (a) and (b), on the
one hand and (c) on the other.” Anderson noted that Belnap or he himself could most
likely find a proof of B if presented with a provable A and ¬A∨B, but wondered if there
is a more general principle involved than what Belnap had suggested, namely “hard
work and a clean life.” There have not been many answers to this question offered in
the literature. The only one we are aware of is by Weiss [2020], who provides a positive
answer for relevant logics formulated in tableau systems, showing that the admissibility
of the cut rule for tableau can be used to combine proofs of ¬A ∨ B and of A to get
a proof of B.5 As far as we know, no satisfactory answer has been given to this latter
part of Anderson’s query for other presentations of relevant logics, including Hilbert
axiom systems, although the relevant research literature has become rife with proofs
showing that γ is indeed admissible in various relevant logics (Meyer and Dunn [1969],
Meyer et al. [1974], Meyer [1976], Mares and Meyer [1992], Seki [2011a,b, 2012],
Weiss [2020], Dunn [2022], Kripke [2022]). There are, then, two parts to Anderson’s γ
problem which can be stated for any given logic L:

• Is γ admissible in L?
• If γ is admissible in L, is there a linking property connecting the proof of A and

the proof of ¬A ∨ B to the proof of B, for any given A and B?

3Anderson [1963, 10]. Anderson and Belnap typically used ‘Ā’ as the negation of the formula A. In this
paper we’ll use ‘¬A.’
4See Humberstone [2010] for discussion of Anderson and Belnap on admissible rules, albeit focused on
a different rule than γ.
5Connections between cut and γ admissibility are also mentioned by Dunn and Meyer [1989] and
Urquhart [2016]. We note that admissibility of cut is not, on its own, sufficient for γ admissibility, as
the sequent system for LR, R without distribution, has cut admissible but γ is not admissible, as shown
by Thistlewaite et al. [1988]. We thank an anonymous referee for drawing our attention to the Weiss and
Urquhart references.
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Anderson and Belnap came to believe that the answer to the second question in rela-
tion to E was no, that the admissibility of γ was indeed by “lucky accident”:

a much luckier accident, in view of the complication of the proof. The
Meyer-Dunn argument [. . . ] guarantees the existence of a proof of B, all
right, but there is no guarantee that the proof of B is related in any sort
of plausible, heartwarming way to the proofs of A and Ā∨ B. [Anderson
and Belnap, 1975, 299]

In this paper we aim not to overturn this judgement, but rather to throw some light on
the flip-side of Anderson’s follow-up question, namely the following question:

Is there a unifying principle which can reasonably be singled out as the
culprit in cases where γ fails to be admissible?

We have already seen that Anderson pointed to distribution as a possible source of γ
failure. Indeed, Anderson’s intuition turned out to be on the mark as it was verified by
Meyer and Dunn [1969, 472] that (A ∧ (B → B)) ∨ ¬A fails to be a logical theorem of
LE—E without the distribution axiom—even though ¬(B→ B)∨((A ∧ (B→ B)) ∨ ¬A)
and B → B are. Which logical principle of LE, then, is the culprit of the failure of γ?
Note, first of all, that LE’s γ failure generalizes to even LBX—B without the distri-
bution axiom but augmented by excluded middle. The three principles of LBX which
seem reasonable to utilize in deriving ¬(B→ B) ∨ ((A ∧ (B→ B)) ∨ ¬A) are

• Excluded middle
• De Morgan: substitute ¬C ∨ ¬D for ¬(C ∧ D) in any formula
• Associativity of ∨

Associativity of extensional disjunction seems beyond reproach, and so we are left with
two possible culpable sources: excluded middle and De Morgan. We know of no result
showing that γ admissibility can be restored by giving up the De Morgan law. With
regards to excluded middle, however, it is worth pointing out that γ is admissible in the
contraction- and excluded middle-free logics B, DW, TW and RW.6 However, we do
not know whether this extends to the distribution free fragments of these logics.

Another source of failure was pointed to in what we take to be the first and only
previous attempt at answering the above question, namely Meyer et al. [1984]. The very
first proof of the admissibility of γ for E was presented by Meyer and Dunn [1969]. As
is therein explained, the proof holds not only for E, but also for some related logics such
as the weaker logic T of ticket entailment, and the stronger logics R and RM. Meyer
and Dunn [1969] note that the transitivity and contraction axioms of E can be weakened
somewhat while retaining the proof, and speculate that this might also be the case for
the negation principles, but content with simply noting that the proof made use of “the
DeMorgan Laws, excluded middle, and contraposition as well as unrestricted double
negation” [Meyer and Dunn, 1969, 473]. Meyer et al. [1984] significantly sharpen this
claim, however:

6This follows rather easily from the fact that these logics are prime [cf. Slaney, 1987].
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So it is Old Hat that distribution failures can lead to γ-failures. But what
about contraction and reductio failures (and, for that matter, exluded
middle failures, [. . . ])? It is New Hat here that, in certain circumstances,
the absence of members of this second group of principles will also lead
to γ failures, even if (indeed, especially if) other laws, like distribution,
are operating with full classical force. [Meyer et al., 1984, 250]

The main contribution of the latter paper, then, was in showing that γ fails to be admis-
sible in the logic CRW—the contraction- reductio- and excluded middle-free logic RW
augmented by Boolean negation.7 Their proof depends on three factors:8

(1) A ∨ ¬[A is a logical theorem
(2) A→ A is a logical theorem
(3) ¬[¬(A→ A) is not a logical theorem

In this paper we expand upon the result of Meyer et al. [1984], but whereas they
made use of what we take to be a relevantly impermissible connective, namely Boolean
negation,9 we show that γ fails in less dramatic settings than the distribution-less and
Boolean but contraction- and excluded middle-free ones previously pointed to. Rather,
γ fails to be admissible in logics such as the weak relevant logic B and stronger relevant
logics, such as E, if these are but augmented by a certain disjunctive axiom which itself
is a logical theorem of the relevant logic R. Thus failure of γ admissibility for relevant
logics need not in any recognizable way be due to failure of distribution or contraction,
reductio, or excluded middle. One natural thought is that γ fails to be admissible due
to some form of weakness—after all, such a logic fails to have some B as one of its
theorems, even though both A and ¬A ∨ B are. There is some truth to this, but not
in the flatfooted sense expressed by Jago [2013, 535]: “What would be interesting is
to discover just how weak a relevant logic needs to be before disjunctive syllogism
becomes inadmissible.”

Paraconsistent relevant logics generally allow even logical truths to be dialetheias.10

The question of the admissibility of γ is not so trivially reduced to a question of strength.
As we’ll see, γ can fail to be admissible in weak and strong relevant logics alike. It has
also been shown to be admissible in weak and strong logics alike. We rather view the

7Note that CRW is a conservative extension of RW, as proved by Giambrone and Meyer [1989]. Cf.
Restall [1993, 510].
8‘¬[’ is here the Boolean negation.
9See Standefer [2022] for a discussion of what a relevant connective is.
10Perhaps this is what Brady [2017, 303] is gesturing at when he says that γ, ¬A, A ∨ B  B, “depends
on the consistency of A.” Taken literally, this is not generally correct, as we will see that, except for the
connexive extension of E, all the failures offered for γ involve consistent formulas A.
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admissibility of γ as a non-trivial criterion of coherence:11 a provable material condi-
tional ought to flow from the relevant conditional in some sense that we, alas, have so
far yet to make precise sense of. Material implication may not generally be a kind of
implication. A logically true one, however, is. In this paper it is therefore highlighted
how easily γ can be made to fail regardless of the overall strength of the logic. Indeed,
we will provide some ways to obtain failures for a wide range of relevant logics. The ex-
amples of γ failure will all be such as to highlight the axiom responsible for the provable
disjunction and thus also the incoherence of the axiomatic construction of the logic.

The plan for the paper is as follows. In section 2, we will present the main axioms
and relevant logics we will consider. In section 3, we will present our main results and
demonstrate failures of γ for a wide range of relevant logics. We begin in §3.1 with
failures that involve a particular axiom, valid in a well-known extension of R. Then we
will demonstrate failures of γ in some well-known four-valued logics (§3.2), and then
we turn to failures of γ in sublogics of R (§3.3). Finally, in section 4, we will conclude
with some general lessons regarding failures of γ.

2. Logics and their axioms and rules

The weakest logic that we’ll consider in detail in this paper will be the weak rele-
vant logic B. This logic, as well as some of the more known relevant (and some quasi
relevant) logics are presented in table 1. We will use the notation L[A1, . . . , An] for the
logic L extended with the axioms (A1), . . . , (An). For the purposes of this paper, we are
considering logics in the framework FMLA, that is, as sets of formulas.12 We require
logics to be closed under substitutions, defined in the usual way.

11This is akin to taking Halldén completeness to be a criterion of reasonableness for disjunction in a logic.
Halldén completeness is the property that if A ∨ B is a theorem of L with no atoms shared between the
disjuncts, then A is a theorem or B is. Halldén completeness has been called ‘Halldén reasonableness’, as
noted by van Benthem and Humberstone [1983].
12See [Humberstone, 2011, 103ff.].
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(A1) A→ A
(A2) A→ A ∨ B and B→ A ∨ B
(A3) A ∧ B→ A and A ∧ B→ B
(A4) A ∧ (B ∨C)→ (A ∧ B) ∨ (A ∧C)
(A5) (A→ B) ∧ (A→ C)→ (A→ B ∧C)
(A6) (A→ C) ∧ (B→ C)→ (A ∨ B→ C)
(A7) ¬¬A↔ A
(A8) (A→ B)→ (¬B→ ¬A) contraposition
(A9) (A→ B)→ ((C → A)→ (C → B)) prefixing

(A10) (A→ B)→ ((B→ C)→ (A→ C)) suffixing
(A11) A→ ((A→ B)→ B) assertion
(A12) (A→ (A→ B))→ (A→ B) contraction
(A13) (A→ ¬A)→ ¬A reductio
(A14) ((A→ A) ∧ (B→ B)→ C)→ C E axiom
(A15) A→ (A→ A) mingle
(A16) A ∨ (A→ B) 3 axiom
(R1) {A, B}  A ∧ B adjunction
(R2) {A, A→ B}  B modus ponens
(R3) {A→ B}  (B→ C)→ (A→ C) suffixing rule
(R4) {A→ B}  (C → A)→ (C → B) prefixing rule
(R5) {A→ B}  ¬B→ ¬A contraposition rule

In order to substantiate a claim of non-derivability or non-theoremhood we will typ-
ically display an algebraic model for the logic in question in which the rule γ fails to
be truth-preserving or the formula in question fails to be true. We will then display the

B A1–A7, R1–R5 DW B +A8 −R5
TW DW +A8 −R5 T TW +A12, +A13
E T +A14 R T +A11
RW TW +A11 R3 R +A16
RM R +A15 RM3 RM +A16

Table 1. Relevant logics

RM // RM3

T // E // R //

==

R3

::

B // DW // TW //

OO

RW

<<

Figure 1. The sublogic relation of the logics in table 1.
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Hasse diagram of the partial order which conjunction and disjunction are interpreted as,
respectively, greatest lower bound and least upper bound over. The other connectives
are evaluated according to the displayed matrices. The subset T is the set of designated
elements. A formula is true in such a model just in case it is evaluated to one such
designated element, and a rule holds in a model just in case it is truth preserving. A
formula is valid in a matrix if it is true in all models on that matrix, and a counterex-
ample is a model in which a formula is not true. Unless otherwise stated, such models
have all been found using Slaney’s MaGIC—an acronym for Matrix Generator for Im-
plication Connectives—which is an open source computer program created by John K.
Slaney [1995].

3. Relevant failures of γ

Most relevant logics are sublogics of classical logic. There are some logics, however,
which are contra-classical in the drastic way that the set of logical theorems would
include every formula if it be closed under γ. One such example is the logic set forth by
Routley and Meyer [1976], which includes a contradiction amongst its logical axioms.
Most failures of γ are, however, due to the presence or absence of less dramatic axioms
and theorems.

To begin, there is a simple, general theorem for γ admissibility that will help constrain
the logics we will consider.13

Theorem 3.1. Let L be consistent and prime. Then, γ is admissible in L.

Proof. Suppose that A and ¬A ∨ B are both theorems of L. Since L is prime, either ¬A
is a theorem or B is a theorem. The first option contradicts the consistency of L, so B is
a theorem. �

This theorem gives a sufficient condition for γ admissibility. The conditions of the
theorem are not necessary, as γ is admissible in R, which is not prime. All the logics
that we are considering are sublogics of classical logic, so they are, therefore, consistent.
The main questions, then, will deal with logics that are not prime. We hasten to add that
we are focusing on logics, rather than theories with non-logical axioms. A theory over
a consistent logic need not itself be consistent, so γ admissibility for a logic does not
transfer immediately to its theories.14

3.1. γ failures using the 3 axiom. In their quest to show that there are stronger logics
than R which satisfy the variable-sharing property, Routley et al. [1982, ch. 3.6] pre-
sented various axioms which are such that the resultant logic both satisfies the variable-
sharing property, and γ fails to be admissible for it. One of these was the axiom (M9):

13A proof of the admissibility of γ in minimal logic using the primeness of the logic was given by Jo-
hansson [1936]. We thank an anonymous referee for directing our attention to this proof.
14It is worth noting, as demonstrated by Mangraviti and Tedder [2023], that there can be consistent
theories over an inconsistent logic as well.
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((A ∧ ¬A) → B) ∨ (A ∧ ¬A) which is readily seen as a theorem in any logic with the 3
axiom. This, then, was the inspiration for the following theorem:

Theorem 3.2. γ fails to be admissible in L[A16], where L is any logic between B and
RM3.

Proof. ¬(A → A) ∨ (¬(A → A) → B) is an instance of (A16) and so a theorem of
L[A16]. Since A→ A also is, but ¬(A→ A)→ B fails to be a logical theorem of RM3,
the claim follows. �

Corollary 3.1. γ fails to be admissible in R3 and in RM3.15

RM3 fails to satisfy the variable-sharing property, although it does satisfy a weak
version of this.16 Note, however, that R3 does satisfy the variable-sharing property.17

This follows from the fact that axiom (A16) is valid in the so-called crystal lattice
displayed in fig. 2—one of the well-known algebraic models used to verify this property.
This algebra was, to our knowledge, first presented by Routley et al. [1982, 250] and
used therein to prove that the variable-sharing property holds true for various logics.
Given the prominence of the crystal lattice, it is worth noting that γ fails to be admissible
in the logic of the crystal lattice, which we will call CL. CL properly contains R3, but
it still has a failure of γ, as we will see.

Using the crystal lattice, we can obtain a strong result on variable-sharing.

Theorem 3.3. Any sublogic of L of R3 has the variable-sharing property.

Proof. The proof is standard. See Routley et al. [1982, 250] for details. �

The failure of γ in theorem 3.2 actually tells us something more about any extension
of B containing (A16).

Theorem 3.4. Let L extend B. If L[A16] is closed under γ, then L[A16] lacks the
variable-sharing property.

Proof. L[A16] has ¬(p→ p)∨(¬(p→ p)→ q) as a theorem as well as p→ p. Closure
under γ yields ¬(p→ p)→ q as a theorem, but this is a violation of the variable-sharing
property. �

Since having the variable-sharing property is typically taken as a necessary condition
on being a relevant logic, this tells us that the combination of (A16) and γ cannot be
enjoyed by any relevant logic, unlike the axioms considered in subsection 3.3, which
can be combined with γ in a relevant logic. This theorem gives us a corollary on CL.

15This was first proven by Dunn [1970, 10] using the fact that (p ∧ ¬p) ∨ ((p ∨ ¬p) → (q ∨ ¬q)) and
excluded middle are logical theorem of RM3.
16See Øgaard [2023] for more on the notion of weak variable-sharing for RM3.
17Standefer [2025] argues that satisfying the variable-sharing property, along with being closed under
(R1) and (R2), is sufficient for being a relevant logic. We will work with this definition below, although
the logics we are investigating are focusing on a relatively narrow portion of such logics.
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Corollary 3.2. γ fails to be admissible in CL.

Proof. CL has the variable-sharing property and contains (A16). The result then follows
from theorem 3.4. �

As CL is a proper superlogic of R, this gives another example of a strong relevant logic
that lacks γ admissibility.

The logics we have considered so far are stronger than or incomparable with R. The
most often discussed relevant logics fall between B and R. Before turning to logics in
that range, we will look at three prominent extensions of the four-valued logic FDE.

3.2. γ failures for four-valued logics. The failures of γ so far have been due to (A16),
the 3-axiom. It has some plausibility in the context of formulating a three-valued para-
consistent logic, although perhaps unappealing from the point of view of the relevant
logician. This type of motivation is precisely what was given by Meyer et al. [1984]
for the four-valued paraconsistent and paracomplete logic BN4 which was shown by
Brady [1982] to be the logic of the four-valued model displayed in figure 3 where T and
F are to be interpreted as, respectively, the “just true” and “just false” truth values, and
B and N as “both true and false” and “neither true or false” truth values.18 BN4 is one
way to extend the four-valued logic FDE with a new implication connective. We will
see three other ways below.

It is claimed by Meyer et al. [1984, 254] that it
is evident that γ fails in BN4. For B ∨ N = T [. . . ]. So, intuitively, both
of B∨N, −B(= B) are (at least) true elements of the matrix. But N, since
it is interpretable as neither true nor false, remains undesignated.

What is evident, however, is only that this is somewhat shy of a satisfactory proof of γ
failure. The following proof rectifies this.

18A logic is regarded as paraconsistent if it is the case it allows for non-trivial inconsistent theories, and
paracomplete if excluded middle fails to be a logical theorem.

T = {1, 2, 3, 4, 5}
5

4

OO

2

@@

3

^^

1

^^ @@

0

OO

→ 0 1 2 3 4 5 ¬
0 5 5 5 5 5 5 5
1 0 1 2 3 4 5 4
2 0 0 2 0 2 5 2
3 0 0 0 3 3 5 3
4 0 0 0 0 1 5 1
5 0 0 0 0 0 5 0

Figure 2. The crystal lattice
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Theorem 3.5. γ fails to be an admissible rule in BN4.

Proof. One of Brady’s axioms for BN4 is

A ∨ (¬A→ (A→ B)).

If we let A be ¬(p→ p), and B be p, we obtain as one of the logical theorem of BN4
¬(p→ p) ∨ (¬¬(p→ p)→ (¬(p→ p)→ p)).

Since p → p is a logical theorem of BN4, but the right-hand disjunct fails to be—it
evaluates to N if p is evaluated to N—it follows that γ isn’t admissible in BN4. �

Thus we have shown that γ fails in BN4, which complements the result of Meyer et al.,
who showed that γ fails in the extension of BN4 with Boolean negation.19

Robles [2021] provides an alternative table for the arrow to obtain a sublogic of BN4
that enjoys the variable-sharing property, which BN4 does not. She calls it BN4vsp. To
obtain the arrow table for this logic, one changes the arrow table for BN4 by setting
F → B = N and B → T = N. We will not dwell on the virtues of BN4vsp, but rather
note that it also exhibits failures of γ.

Theorem 3.6. γ is not admissible in BN4vsp.

Proof. Robles [2021, 367] lists (A∨¬B)∨ (A→ B) as an axiom of BN4vsp. With some
reassociating, this has as an instance, ¬(p→ p)∨ (¬(q→ q)∨ (¬(q→ q)→ (p→ p))),
setting B to p → p and A to ¬(q → q). Since A → A is valid, two applications of γ
would yield ¬(q → q) → (p → p) as a theorem. This, however, is a violation of the
variable-sharing property, which BN4vsp has. Therefore, γ is not admissible. �

Robles [2023] presents a relative of BN4vsp, BN4ap, that enjoys the variable-sharing
property as well as the Ackermann property, which says that A→ (B→ C) is a theorem
only if A contains an occurrence of the arrow. The logic BN4ap is also obtained by a
modification of the arrow table for BN4. The modification is more involved than the
previous one, so we will omit the table here, but we will show that γ fails for this logic.
19NB: Meyer et al. use ‘¬’ for Boolean negation and ‘−’ for de Morgan negation, whereas we use ‘¬’ for
de Morgan negation and ‘¬[’ for Boolean negation. It is also worth noting that the failure of γ that Meyer
et al. demonstrate is γ formulated with De Morgan negation as its displayed negation. The version of γ
with the displayed negation as Boolean negation holds.

T = {B,T }
T

B

??

N

__

F

__ ??

→ F B N T ¬
F T T T T T
B F B N T B
N N N B T N
T F F N T F

Figure 3. The BN4 model
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Theorem 3.7. γ fails for BN4ap.

Proof. Robles [2023, 476] lists the rule A ∧ B  (¬A ∨ ¬B) ∨ (A → B) in the axiom-
atization of BN4ap. Let A be p → p and B be q → q. Suppose that BN4ap is closed
under γ. As both p → p and q → q are theorems, it follows that ¬(p → p) ∨ ¬(q →
q) ∨ ((p → p) → (q → q)) is as well. Two applications of γ would then result in
(p→ p)→ (q→ q) being a theorem. This would violate the variable-sharing property,
which BN4ap has, therefore BN4ap is not closed under γ. �

Robles and Méndez [2016] provide an alternative table for the arrow on the four-
valued matrix above to obtain a logic they call E4. To obtain the table for the E4 arrow,
we change all the ‘N’s in the BN4 table to ‘F’s. We can obtain a similar failure of γ for
E4.

Theorem 3.8. γ is not admissible in E4.

Proof. As one of the theorems of E4, Robles et al. [2016, 97] list (A ∨ ¬B) ∨ (A→ B).
With some reassociating, an instance of this is ¬(p→ p)∨ (q∨ (q→ (p→ p))), setting
A to q and B to p → p. The righthand disjunct, however, is not valid, as v(p) = B and
v(q) = N provides a counterexample:

N ∨ (N → (B→ B)) = N ∨ (N → B) = N ∨ F = N.

Therefore, γ is not admissible in E4.
�

All of BN4, BN4vsp, BN4ap, and E4 are presented as natural extensions of the four-
valued matrix for FDE with an implication connective. None, however, has γ admissi-
ble.

That is enough on the logics outside of the usual range of relevant logics, namely
between B and R. We will now turn to failures of γ for logics in this range.

3.3. γ failures for sublogics of R. Except for RM3 and R3, γ is admissible in all the
logics displayed in table 1.20 In this subsection it will be shown that each of these
sublogics of R can easily be augmented so as to yield a logic which retains the property
of being a sublogic of R—and therefore also the property of variable-sharing—yet fails
to have γ as an admissible rule. The idea here is simple: ¬(A → A) is satisfiable in any
sublogic of R as it can be made true in the crystal lattice. We then find some B which is
a logical theorem of R but which fails to be a logical theorem of L†—L augmented by
¬(A→ A) ∨ B—where L is a sublogic of R. If such a B can be found, we can conclude
that γ fails to be admissible in L†. We cannot turn this plan into a general theorem,
because, as far as we can tell, there is not a general method of showing that L† fails to
have B as a theorem, even though L without the additional axiom will fail to have B as
a theorem. For particular choices of B, however, we can get the desired result.

20The proof of Meyer and Dunn [1969] covers T, E, R, and RM. That B, DW, TW, and RW admit γ
was proven by Slaney [1987].
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To avoid having to prove the same thing for each of the R-sublogics of table 1, we
start by noting that the permuted version of the contraction axiom,

(PC) A→ ((A→ (A→ B))→ B)

is a theorem of R, yet fails to be a theorem of both E and of RW even when augmented
with the following axiom “dialethic-disjunctive” version of the PC-axiom:

(dPC) ¬(A→ A) ∨ (A→ ((A→ (A→ B))→ B))

Since (PC) is a logical theorem of R, (dPC) is so too. Thus adding (dPC) to any sublogic
of R will still beget a sublogic of R. That PC fails in E[dPC] is verified by the model
displayed in figure 4. That it fails in sublogics of RW[dPC] is verified by the model
displayed in figure 5.

Theorem 3.9. γ fails to be admissible in B[dPC], DW[dPC], TW[dPC], RW[dPC],
T[dPC], and E[dPC].

For the next example, we will need to define some notation. Let 2A be defined as
(A → A) → A, which is how Anderson and Belnap define the necessity operator of E.
Next, let (E1) be the axiom 2(A→ A) and let (E2) be the axiom ¬2A∨ (¬2(¬A∨ B)∨
2B), both of which are theorems of R. With this in hand, we can state our next theorem.

Theorem 3.10. Let L be any sublogic of E. Then L[E1, E2] fails to have γ admissible.

T = {1, 2}
2→ ((2→ (2→ 0))→ 0) = 0

2

1

OO

0

OO

→ 0 1 2 ¬
0 1 1 1 2
1 0 1 1 1
2 0 0 1 0

Figure 4. An E[dPC] model

T = {1, 3}
2→ ((2→ (2→ 1))→ 1) = 2

3

1

@@

2

^^

0

^^ @@

→ 0 1 2 3 ¬
0 3 3 3 3 3
1 0 1 2 3 1
2 2 2 1 3 2
3 0 0 0 3 0

Figure 5. A RW[dPC] model
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Proof. To obtain a failure of γ, take the instance of (E2) with A as p → p and B as
q and the instance of (E1) with A as p. Then, the left disjunct of (E2) is the negation
of that instance of (E1). The right disjunct of the instance of (E2), namely ¬2(¬(p →
p) ∨ q) ∨2q has a 12 element countermodel, as found by MaGIC. �

E has (E1) as a theorem, but many of its sublogics, notably T, do not. Therefore, we
include it for additional generality. E does not have (E2) as a theorem. The intuition
behind (E2) is that it is a form of distribution of necessity over the defined material
conditional, which is valid in normal modal logics over classical logic.21 That formula
is the one that Mares [2000] uses to show that E is not conservatively extended by
Boolean negation. The extension has an instance of (E2) as a theorem that is not a
theorem of E without Boolean negation.

Another way to find a logic for which γ fails to be admissible is to rather focus upon
the axioms of the logics which extend it. Let’s look at B as an example. DW is obtained
from this logic by replacing the contraposition rule by its axiomatic version (A8). We
have already noted that γ is admissible in both these logics. As above it can be verified
that adding

(dA8) ¬(A→ A) ∨ ((B→ C)→ (¬C → ¬B)))
to B yields a logic in which (A8) fails to be a logical theorem and which, therefore, fails
to have γ as an admissible rule. In fact, we can strengthen this claim, which we will
codify as a theorem. We will consider a logic that is, roughly, E without (A8).

Theorem 3.11. Let L be any sublogic of B[A9, A10, A12, A13, A14]. Then γ fails to be
admissible in L[dA8].

Proof. The logic B[A9, A10, A12, A13, A14, dA8] is valid in the matrix in figure 6. Set-
ting v(q) = v(r) = 0 yields

(0→ 0)→ (¬0→ ¬0) = 2→ (3→ 3) = 2→ 1 = 0

as desired. �

21This is the (K) axiom of normal modal logics. (E2) can be rewritten as 2A ⊃ (2(A ⊃ B) ⊃ 2B).

T = {1, 2, 3}
3

2

OO

1

OO

0

OO

→ 0 1 2 3 ¬
0 2 2 2 2 3
1 0 1 2 2 2
2 0 0 2 2 1
3 0 0 0 1 0

Figure 6. A B[A9, A10, A12, A13, A14, dA8] model
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As a second example, adding ¬(A → A) ∨ ((A → ¬A) → ¬A) to TW results in a
proper sublogic of TW[A13] for which, then, γ fails to be admissible.22 Lastly, Re-
stall [1993] emphasized the fact that ¬A ∨ ((A→ B)→ B) fails to be a logical theorem
of E, although it is provable in R. Note, then, that adding this axiom to T yields a logic
for which γ fails to be admissible seeing as ((A → A) → B) → B fails to be a theorem
of the resultant logic, although it is a theorem of E.23

Thus, we have supplied some methods for finding failures of γ in sublogics of R
and demonstrated such failures for a wide range of logics. It is worth noting that the
examples can be multiplied. In the disjunctive axioms we have considered, the left
disjunct was ¬(A → A), but there is nothing special about our choice of A → A here.
Since relevant logics have non-equivalent theorems, one could choose a different, non-
equivalent theorem of B to obtain further examples of failures.24 As an example, in
(dPC), one could use ¬C as the left disjunct, where C is any theorem of B not equivalent
to A → A, and the formula ¬C ∨ (A → ((A → (A → B)) → B)) would equally
demonstrate the failures of γ akin to those of theorem 3.9.

4. Conclusions

We have seen that γ can fail in strong logics, including logics stronger than R, and
we have seen that it can fail in logics weaker than R. We have seen that γ can fail
in logics incomparable with R. γ can fail in logics with the variable-sharing property
and in logics without the variable-sharing property. Indeed, based on the proposals for
generating failures that we presented above, γ failing seems to be the norm, rather than
the exception.

An analogy with classical logic and its normal modal extensions will be helpful to
clarify our point. It is known that many of the standard normal modal logics are sound
and complete with respect to some class of Kripke frames. This might give one the
impression that completeness with respect to a class of frames is the norm. This is
not the case, however, as modal incompleteness, failing to be complete with respect to
any class of frames, is in fact the norm.25 Could the situation with γ in relevant logics
be similar to that of completeness with respect to a class of frames in normal modal
logics? Although the results above do not entail this, they do suggest that the answer is
yes, since the results of §3.3 give ways of systematically generating logics for which γ
fails that are contained in R. This highlights the question of what is distinctive about

22That the sublogic relation here is a proper one can, as in the above case of B, easily be verified using
MaGIC. Also: The question of whether γ is admissible in TW[A13] was raised by Robles and Mén-
dez [2010] but remains, to our knowledge, unresolved.
23This is also a fact easily verified using MaGIC, a task that we leave to the reader.
24In the terminology of Standefer [2019], a logic is polythetic iff it has non-equivalent theorems. This
is in contrast to monothetic logics, for which see Humberstone [2011, 221]. In monothetic logics, all
thoerems are equivalent.
25See Blackburn et al. [2002, 260ff.] for discussion of this point.
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the logics for which γ is admissible, a question for which we do not have an answer at
present.

It is sometimes suggested that γ fails because of inconsistency. For non-logical the-
ories, this seems plausible. The logics we discussed above, however, are all consistent,
as they are sublogics of classical logic. The closest one gets to inconsistency is that
there are matrices that give a designated value to some formula and its negation. Let
us call such matrices inconsistent. Having an inconsistent matrix for which the logic is
sound is not sufficient for a failure of γ, since γ is admissible for R and there are many
inconsistent matrices for which R is sound. One might think that having a character-
istic matrix that is inconsistent is sufficient for a failure of γ. This too is incorrect, as
one can see by considering the three-valued logic LP.26 One can get LP from the BN4
matrix by dropping the implication from the language and considering only the mod-
els that assign values from the set {T, F, B}. γ is admissible in LP, since the theorems
of LP are exactly those of classical logic.27 As a second example, note that it follows
from the result reported in Meyer [1971] that the inconsistent Z-valued Sugihara matrix
is characteristic of RM.28 We tentatively conclude that inconsistency is not the proper
diagnosis for failures of γ in the logics discussed above.

At the end of their article, Meyer et al. [1984, 255] say that proponents and critics
of relevant logics “have been looking at the wrong systems. It is better that such is-
sues should be joined where γ fails.” Based on their examples, they mean logics with
Boolean negation and logics without distribution, contraction, or reductio. We don’t
disagree that those are good examples to consider. They are not, however, the only ex-
amples, as we have shown that many logics with the highlighted principles have failures
of γ. We would add to the sentiment of Meyer et al. that the failures of γ are widespread
throughout the family of relevant logics.
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