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Abstract The operational semantics of Urquhart [1972a,b] is a deep and important
part of the development of relevant logics. In this paper, I present an overview of
work on Urquhart’s operational semantics. I then present the basics of collection
frames. Finally, I show how one kind of collection frame, namely functional set
frames, is equivalent to Urquhart’s semilattice semantics.
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The operational semantics of Urquhart [1972a,b] is a deep and important part of
the development of relevant logics.1 Formally, the operational semantics provided
one of the first intuitivemodel-theoretic interpretations for the implication of relevant
logics.2 Philosophically, the operational models have a natural interpretation in terms
of combining information: The elements of the domain are pieces of information, and
a piece of information verifies an implication whenever combining it with any piece
of information verifying the antecedent results in a piece of information verifying
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The University of Melbourne, e-mail: sstandefer@unimelb.edu.au
1 See Dunn and Restall [2002] and Bimbó [2006] for more on the general area of relevant logics.
2 The period when the operational semantics was developed was quite active for the area of models
for relevant logics, with the publication of Maksimova [1969], Routley and Meyer [1972a,b, 1973],
and Fine [1974]. See Bimbó and Dunn [2018] and Bimbó et al. [2018] for more on some of the
early contributions to the area, including discussion of an early manuscript by Routley, published as
Ferenz [2018]. Scott [1973, fn. 33] and Chellas [1975, 143, fn. 17-18] note that Scott had developed
a version of ternary relational models earlier but had not published it. I thank Lloyd Humberstone
for the references of the preceding sentence.
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the consequent. This relation of verification extends naturally to conjunction and
disjunction.3 Completeness results are available as well.4

The operational frames come with a set of postulates, many of which can be
dropped.5 Dropping postulates, of course, results in different sets of validities. The
full set of the standard postulates, which will be set out shortly, give the opera-
tional models the structure of a join semilattice. The models obeying the full set of
postulates will be called semilattice models.

Operational models have been studied by others in other contexts. Došen [1988,
1989] studies general groupoid models of substructural logics and connects them
with sequent systems. Buszkowski [1986] uses groupoid models to study Lambek
calculus.

The goal of this paper is to set out another view on semilattice semantics. Restall
and Standefer [20xx] provides a new approach to frame semantics for relevant logics.
Our approach uses a binary relation between collections of points and points, rather
than the standard ternary relation among points.6 For this paper, I will focus on the
case when the collections of interest are sets of points. In this paper, I will show
that functional set models coincide with semilattice models in the sense that from a
semilattice model one can define a functional set frame, and from a functional set
frame, one can define a semilattice model, and repeating the process gets you the
original model. Further, I will show that the logic of functional set frames properly
extends the logic of (possibly non-functional) set frames. Before getting to these
results, I will provide some background on operational and semilattice models and
their logic, highlighting some features that are perhaps underappreciated. I will then
briefly present an overview of set frames. In the final section, I will present the
results, which will, I hope, add to our understanding of the logic of the semilattice
models.

3 The extension to conjunction is arguably more natural than the extension to disjunction, a
point raised by Humberstone [1988]. Some information can reasonably verify a disjunction by
exhaustively splitting into two portions, each of which verifies one of the disjuncts, as opposed to
the standard clause used by Urquhart, namely that a disjunction is verified by some information
when one or the other disjunct is. I will briefly return to Humberstone’s approach to disjunction in
the next section.
4 See Fine [1976a] and Charlwood [1981]. It should be noted that Urquhart [1972b] already had
completeness results for the implicational logics.
5 Urquhart [1972b,a] also considered extending the frames with modal elements, adding a set of
possible worlds and amodal accessibility relation on them in order to interpret the implication of the
logic E of entailment. The modal accessibility relation for E obeys the usual S4 conditions, namely
reflexivity and transitivity. Urquhart raises some questions about different logics resulting from
different conditions put on the modal accessibility relation. Fine [1976b] proves a completeness
theorem for the S5 analog of E. This idea is briefly discussed by Mares and Standefer [2017]. As
far as I know, there has been no exploration of the modal expansions of the semilattice semantics,
or more general operational semantics, with of a primitive modal operator, 2, in addition to the
non-modal implication of the underlying logic.
6 For more on ternary relational frames, see Routley and Meyer [1972a,b, 1973], Routley et al.
[1982], or Restall [2000], among others. For discussion of their philosophical significance, see
Beall et al. [2012].
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1 Semilattice frames

In this section I will define semilattice frames, and the more general operational
frames, and provide some comments on their logic. Once the basic formal apparatus
has been presented, I will briefly survey the work that has been done in the area, in
order to highlight some underappreciated aspects of the semilattice and operational
frames.

Definition (Semilattice frame) A semilattice frame is a triple 〈P,t, 0〉, where 0 ∈ P
and t : P × P 7→ P obeys the following conditions.

(S1) 0 t x = x
(S2) x t y = y t x
(S3) x t (y t z) = (x t y) t z
(S4) x t x = x �

More general operational frames can be had by dropping any of the latter three
conditions. The class of operational frames dropping postulate (S4) is one I will
come back to briefly.

Definition (Semilattice model) A semilattice model is a pair of a semilattice frame
〈P,t, 0〉 together with a valuation V : At 7→ ℘(P).

A verification relation 
 is a binary relation between points and formulas defined
inductively as follows.

• x 
 p iff x ∈ V(p)
• x 
 B∧ C iff x 
 B and x 
 C
• x 
 B∨ C iff x 
 B or x 
 C
• x 
 B → C iff for all y ∈ P, if y 
 B, then x t y 
 C �

Definition (Holds, Validity) A formula A holds in a semilattice model 〈P,t, 0, V〉
iff 0 
 A

A formula A is valid for semilattice frames iff A holds in all semilattice models.
Write |=SL A to mean that A is valid for semilattice frames. �

When discussing the operational semantics, the natural point of comparison is
with the logic R+, which is the “positive fragment” of R in the vocabulary {→,∧,∨}

and its subvocabularies.7 R+ can be given a Hilbert-style axiomatization as follows.

(R1) A → A
(R2) A∧ B → A, A∧ B → B
(R3) (A → B)∧ (A → C) → (A → B∧ C)
(R4) A → A∨ B, A → B∨A
(R5) (A → C)∧ (B → C) → (A∨ B → C)

7 The term “positive fragment” is somewhat misleading, since this is naturally taken to include at
least the fusion connective, ◦, and the Ackermann constant, t, as these are usually included, with
negation, in standard forms of the full axiomatization of R. For this paper, I will use “positive
fragment” for what is better called “the implication-conjunction-disjunction fragment”.
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(R6) A∧ (B∨ C) → (A∧ B)∨ (A∧ C)
(R7) (A → B) → ((B → C) → (A → C))
(R8) A → ((A → B) → B)
(R9) (A → (A → B)) → (A → B)

(R10) A,A → B ⇒ B
(R11) A,B ⇒ A∧ B

The logic RW+is obtained by dropping axiom (R9). The logics T+ and TW+, which
will figure only briefly below, can be obtained by dropping axiom (R8) from R+ and
RW+, respectively, and adding (A → B) → ((C → A) → (C → B)).

Let us call the logic generated by the semilattice semantics UR. There are a few
related logics that get discussed in the literature. One of those, URW, is the set of
formulas valid in the class of operational frames obtained by dropping the postulate
xx = x while retaining the others. The logic URW is most naturally compared with
RW+. Finally, the logics UT and UTW are obtained by adding a binary relation, 4,
on points to the classes of operational frames for UR and URW, respectively, and
modifying the verification clause for implication.8 These four logics will be called
the operational logics.

Let us say L→ and L→,∧ for the fragments of the logic L in the subscripted
vocabularies. It turns out that the theorems of UR→ coincide with those of R+→, and,
similarly, UR→,∧ coincides with R+→,∧.

With disjunction, a difference emerges. UR properly extends R+. By way of
example, both

(A → B∨ C)∧ (B → D) → (A → D∨ C)

and
(A → ((A → A)∨A)) → (A → A)

are theorems of UR that are not theorems of R+.9 Humberstone [1988] shows how
to modify the semilattice frames along with the verification condition for disjunction
to yield frames for which R+ is sound and complete. Humberstone does this by
adding a second operation, +, on points to the frames, which operation is used in
the verification condition for disjunction, as well as a distinguished unit element for
this operation. Humberstone’s verification condition for disjunction is the following.

• x 
 B∨ C iff there are y, z ∈ P such that x = y+ z, y 
 B and z 
 C.10

8 The modification is: x 
 B→ C iff for all y ∈ P such that x 4 y, if y 
 B, then xty 
 C.
The logics UT and UTW will not feature much below, so further comment on them will be relegated
to footnotes.
9 It is worth noting that UT properly extends T+, as shown by the same examples.
10 This sort of condition for disjunction also occurs in work on dependence logic and inquisitive
semantics. For the former, seeYang andVäänänen [2016]. For the latter, seeCiardelli et al. [2019], as
well as Ciardelli and Roelofsen [2011],Punčochář [2015, 2016, 2019], and Holliday [forthcoming].
Humberstone [2019] discusses the issues in a general setting.
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There are, additionally, a few conditions on the modified frames, for which the
interested reader should see the cited paper.11

UR properly extends R+, and further, the extension is not captured by a simple
axiom scheme in the way that R extends T by the addition of axiom scheme (R8).
Rather, the following additional rule is used, where the notation [A1, . . . , Ak] → B
means A1 → (· · · (Ak → B) · · · ): From

B∧ ([A1 ∧ q1, . . . , An ∧ qn] → C) → ([B1 ∧ q1, . . . , Bn ∧ qn]) → E)

and

B∧ ([A1 ∧ q1, . . . , An ∧ qn] → D) → ([B1 ∧ q1, . . . , Bn ∧ qn] → E),

to infer
B∧ ([A1, . . . , An] → C∨D) → ([B1, . . . , Bn] → E),

where the qi, 1 ≤ i ≤ n, are distinct and occur only where displayed.
When viewed as a Hilbert-style axiom system, the charm of UR is, perhaps, not

obvious. It adds to R+ a complex rule, and one might wonder whether the additional
theorems are really that appealing. The Hilbert-style axiomatization is, I think, not
the logic’s best side. Indeed, Dunn and Restall [2002, 69] remark, “We forbear
taking cheap shots at such an ungainly rule, the true elegance of which is hidden in
the details of the completeness proof that we shall not be looking into. Obviously
Anderson and Belnap’s R is to be preferred when the issue is simplicity of Hilbert-
style axiomatisations.” The models have a clear appeal, but there is more to say on a
proof-theoretic front.

Charlwood [1978] presents a natural deduction system for UR.12 The system
uses subscripts, much like the Fitch systems of Anderson and Belnap [1975] and
Brady [1984]. Charlwood shows that the natural deduction system for UR admits
a normalization theorem. On the basis of that theorem, he shows that a second
additional rule used by Fine [1976a] is in fact admissible and, in light of a proved
equivalence with the Hilbert-style axiomatization with the above rule, unnecessary.
This is instrumental is showing that the Hilbert-style axiomatization is complete
for the semilattice semantics. As far as I know, similar completeness results for
Hilbert-style axiomatizations for the other operational logics have yet to be obtained.
While completeness for UR has been settled, Urquhart [2016] points out that another
important meta-theoretic question remains open, namely whether UR is decidable.
Urquhart [1984] famously showed that R was undecidable, and a decidability result
for semilattice logic would provide an important contrast.

The normalization theorem shows that the rules fit together in a natural way.
Further evidence of the naturalness with which the rules fit together comes from the
fact that distribution, A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C), is derivable without a
special distribution rule, which is not the case in the Anderson-Belnap-Brady-style

11 The reader should also see the discussion of Humberstone [2011, 905ff.].
12 This system and variants for URW, UT, and UTW are presented by Giambrone and Urquhart
[1987, 437-438]
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indexed Fitch systems. Distribution is, rather, a consequence of the introduction and
elimination rules for the connectives involved, which the normal proof having the
same form that it would in intuitionistic natural deduction. Indeed, Urquhart [1989]
notes this as a point in favor of the semilattice logic.

Sequent systems have received much attention in the study of the logic of op-
erational semantics. A sequent system was already provided by Urquhart [1972b,
31], along with a completeness proof for UR. This system uses indexed formulas
and multiple conclusions. Giambrone and Urquhart [1987] presents two subscripted
sequent systems for UR, as well as modifications to obtain systems for the other op-
erational logics. These systems are proved equivalent to each other. Kashima [2003]
presents cut-free, multiple conclusion, labelled sequent systems for the operational
logics.

While the semilattice semantics has gotten a lot of attention, the more general
operational semantics should not be ignored. In particular the operational frames
that drop postulate (S4), xx = x, have a lot of appeal for logicians interested in
non-contractive logics.13 An alternative semantics, disjoint semantics, for the non-
contractive logic URW was defined by Giambrone et al. [1987]. Disjoint frames keep
all the postulates of the semilattice frame and add the postulate
• x ≤ yt z iff there are u,w such that utw = x, u ≤ y, andw ≤ z, where x ≤ y

iff x t y = y.
Two points x and y are said to be disjoint, Jxy, iff for all z ∈ P, z ≤ x and z ≤ y only
if z = 0. The verification clause for the implication is then modified to the following.
• x 
 B → C iff for all y ∈ P, if Jxy and y 
 B, then x t y 
 C

Disjoint semantics for UTW is obtained by adding in a binary relation and adapting
the verification clause, much the same as operational semantics for UT is obtained
from the semilattice semantics.

Meyer et al. [1988] shows that over the vocabulary {→,∧}, the disjoint and
contraction-free operational semantics are equivalent and that RW→,∧ and TW→,∧
are complete with respect to the appropriate classes of operational models. Kashima
[2003] shows that disjoint and operational semantics are equivalent even when
disjunction is in the language. It is, as far as I know, an open question whether
RW+ and TW+ are complete with respect to the appropriate classes of frames. As
remarked by Giambrone and Urquhart [1987, 439], the standard examples where the
semilattice semantics goes beyond the ternary relational semantics, or equivalently
the standard axiomatizations of the contraction-less relevant logics, turn out not to
be valid in contraction-free operational semantics.

This brief survey of work on semilattice semantics will conclude with some
recent work. A logic has the variable sharing property when all theorems of the
form A → B are such that A and B share a propositional variable.14 The logic
13 In the relevant logic tradition, one of the primary virtues of non-contractive logics is that they
support a non-trivial naive set theory. For examples of work in this area, see Brady [1984, 1989,
2006, 2014, 2017] and Weber [2010a,b, 2012, 2013], among others.
14 For a general characterization of the variable sharing property, see Robles and Méndez [2011,
2012].
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R enjoys the variable sharing property, and variable sharing is usually taken as a
necessary condition on being a relevant logic. Weiss [2019] shows that UR has
the variable sharing property, as does as an extension with an involutive negation,
and he does this via a semilattice structure using arithmetic operations, as opposed
to the matrix methods often used, such as the 8-valued algebra used by Anderson
and Belnap [1975, 252-254]. Weiss [2020] shows how to conservatively extend the
semilattice semantics with a constructive negation.

Given the importance of the operational semantics, it is worth comparing any new
semantics for relevant logics to it. In the remainder of the paper, I will provide enough
background on collection frames to illuminate the connections and divergences
between collection frames and operational frames.

2 Set frames

Let us turn to set frames. As a notational convention, where P is a non-empty set, P
will be the set of all finite subsets of P.

Definition (Set frames) A set frame is a pair 〈P, R〉, where P is a non-empty set of
points and R is a binary relation on P × P that obeys the conditions

Reflexivity ∀x ∈ P, {x}Rx, and
Transitivity ∀X, Y ∈ P∀y ∈ P, if ∃z(XRz∧ ({z} ∪ Y)Ry), then (X ∪ Y)Ry.
Evaluation ∀X, Y ∈ P∀y ∈ P, if (X ∪ Y)Ry, then ∃z(XRz∧ ({z} ∪ Y)Ry).

The conjunction of Transitivity and Evaluation will be called Compositionality, and
set relations obeying Compositionality will be called compositional. �

In general, we do not have to impose the first condition,Reflexivity, although
dropping it will require generalizing the definition of validity. In this paper there
will not be a need to discuss non-reflexive set frames, since the desired equivalence
appears to require the condition, so all set frames will be reflexive. Non-empty mem-
bers of P will be called inhabited.15 One can consider set frames only on inhabited
sets, but I will not do so here. The conditions Transitivity and Evaluation appear to
be required for collection frames to work properly, unlike the previous conditions.
Their contributions in the development of the framework are many, including the
verification of heredity for conditionals, A → B, and validating structural rules in
proof systems. An example of their contribution in the present work can be found in
the proof of lemma 11, verifying that a frame has a certain property. The interested
reader should consult Restall and Standefer [20xx] for details.

Some comments on set frames are in order. First, the binary relations of set frames
are defined over finite sets of points because the binary relations of more general

15 Restall and Standefer [20xx] consider many types of collections, not just sets, and there are empty
versions of all of these. Especially in the general setting is useful to have a term for distinguishing the
collection frames that exclude empty collections and those that include them. The term ‘inhabited’
is used here for terminological continuity with the cited paper and Restall [20xx].
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collection frames are defined over finite collections. This enables a straightforward
connection with more familiar frames, such as ternary relational frames and opera-
tional frames, where one is possible. There appears to be no barrier to defining the
binary relations over infinite collections, and this generalization will be left to future
work.

Next is a comment on the interpretation of the binary relation R. If we think of the
points as being bodies of information, we can think ofXRy as saying that the result of
combining together all the information in X is contained in y. On this interpretation,
Reflexivity is a sensible condition, as it is intuitive that the information obtained
by combining all the information in {x} is contained in x. After all, there is no
other point that can supply information available. We can also use the informational
interpretation to motivate the two parts of Compositionality. The two parts say that
one can combine together the information in X ∪ Y in one go or break it into parts
and combine together the information in X and combine that with the information
in Y. These are especially natural conditions in the context of set frames, since most
sets can be broken into parts in a variety of ways.

Finally, we will comment on the relation between set frames and the better known
ternary relational frames for relevant logics. Every set frame, as defined above,
induces a ternary relational frame for the logic R+, but not every ternary relational
frame for R+ induces a set frame, which point will come up again later. Nonetheless,
set frames are interesting for at least two reasons. First, they permit generalizations
that are not obvious with ternary relational frames, namely permitting non-reflexive
and inhabited frames. Second, it is comparatively easy to verify whether a structure
is a set frame, whereas it is somewhat more involved to verify that a structure is a
ternary relational frame that verifies the frame conditions for R+.

Compositional set relations are fairly common. For example, suppose that P = ω
and XRy iff y = max(X), where max({ }) = 0. This relation is compositional and
reflexive. As another example, let P = ω+, the positive natural numbers, and XRy
iff for some x ∈ X, x and y share a prime factor or y = 1, when X , { }, and
{ }R1. This relation is also compositional and reflexive. The interested reader should
see Restall and Standefer [20xx] or Restall [20xx] for more. The first example is an
example of a functional, compositional relation. I will put things more precisely in
a definition, which will be important below.

Definition (Functionality) A set frame 〈P, R〉 is functional iff both

• for all X ∈ P there is x ∈ P such that XRx, and
• if XRy and XRz, then y = z. �

Functional set frames are pleasantly common. Note that functional set frames obey
a stronger form of Evaluation.16

Uniform Evaluation ∀X ∈ P∃z ∈ P[XRz and ∀Y ∈ P∀y ∈ P, if (X ∪ Y)Ry, then
({z} ∪ Y)Ry].

16 I thank Lloyd Humberstone for pointing this out.
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Uniform Evaluation differs from Evaluation in that the point to which X evaluates,
z, is independent of the choice of Y.
Definition A set model is a pair of a set frame 〈P, R〉 and a valuation V : At 7→ ℘(P)
satisfying the heredity property, if x ∈ V(p) and {x}Ry, then y ∈ V(p). Valuations
with this property will be called hereditary. Such a model is said to be built on the
set frame.

A verification relation
 is a binary relation between points and formulas defined
inductively as follows.
• x 
 p iff x ∈ V(p)
• x 
 B∧ C iff x 
 B and x 
 C
• x 
 B∨ C iff x 
 B or x 
 C
• x 
 B → C iff for all y, z ∈ P, if {x, y}Rz and y 
 B, then z 
 C �

As one might expect, preservation of verification along R extends from atoms to
all formulas.
Theorem (Heredity) If x 
 A and {x}Ry, then y 
 A. �

Proof The proof is by induction on the construction of the formula. It is routine. �

In the present setting, I will focus on valid formulas. This permits the use of the
following definition for validity, which is a special case of the more general notion.17

Definition (Holds, valid) A formula A holds on a set model iff for all x ∈ P such
that { }Rx, x 
 A.

A formula A is valid on a set frame iff A holds in all models built on that set
frame.

A formula A is valid in a class of set frames iff A is valid on every set frame in
that class.

If A is valid in the class of all set frames, we will write |=Set A. If A is valid in
the class of all functional set frames, we will write |=Fun A. �

With the definition of validity in hand, we can talk about the logic of set frames.
The logic R+ is sound for the class of set frames, which is to say that if A is a

theorem of R+then |= A. The question of completeness, whether whenever we have
|= Awe also have thatA is a theorem of R+, is still open at the time of writing. In the
next section, I will show that UR is sound and complete for the class of functional
set frames. It is this contrast, between the logic of set frames, which may be R+ or
may extend it, and the logic of functional set frames, which coincides with UR, that
is the main reason for focusing on set frames.

An alternative that is not being pursued here is to use multiset frames, rather
than set frames.18 Multisets differ from sets in distinguishing the number of times
17 Restall and Standefer [20xx] use a sequent presentation of R+, and define validity for sequents.
The present definition of validity is a special case of the definition they use.
18 Multiset frames that obey a contraction principle are similar to the definition of R-frame ofMares
[2004, 210], using a ternary relation R3 on points and defining relations of higher arity. Given the
conditions onRn+1, forn ≥ 2, the firstn arguments can be viewed as forming a multiset related
to the final argument.
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an element is a member of that multiset, and multisets and sets are similar in not
keeping track of the order.19 The multisets [a, a, b] and [a, b, a] are identical, but
they both differ from the multiset [a, b], as the latter contains a only once and the
former both contain it twice. Finite multisets are those that contain a finite number of
elements a finite, non-zero number of times. Multiset frames and models are defined
much as set frames and models, where the binary R relates finite multisets of points
to points and the definition of verification trades sets for multisets. The technical
details of the arguments to follow are slightly easier in the context of multiset frames,
but the technical advance is in the context of set frames.20 For that reason the focus
is on set frames.

3 Another view on semilattice logic

With the necessary background in place, I can now turn to the task of connecting
semilattice models and functional set models. There is a tight connection between
them. Every semilattice frame induces a functional set frame, and each semilattice
model induces a corresponding functional set model that agrees on all formulas.
Similarly, every functional set frame induces a semilattice frame, and the models
on those frames agree on all formulas. Broadening out to include non-functional set
frames yields a counterexample to a theorem of UR.

Given a semilattice frame 〈P, 0,t〉, define
⊔

: P 7→ P as follows.

⊔
X =


0 X = { }

x X = {x}

x1 t (· · · (xn−1 t xn)) X = {x1, . . . , xn}

When X = {x, y}, I’ll write x t y for
⊔

X.

Lemma Let 〈P,t, 0〉 be a semilattice frame. Then 〈P, R〉 is a functional set frame,
where R is defined as follows.

• XRy iff
⊔

X = y �

Proof The relation R is well-defined. If X = Y, then
⊔

X =
⊔

Y, so XRz iff YRz.
Reflexivity follows from the singleton case of the definition of

⊔
. It remains to

check the two directions of compositionality, for which we show that
⊔
(X ∪ Y) =⊔

X t
⊔

Y, for all X, Y ∈ P.
Suppose that X = Y = { }. Then

⊔
(X ∪ Y) =

⊔
{ } = 0 = 0 t 0 =

⊔
X t
⊔

Y.

19 See Blizard [1988] for an overview of multiset theory. Meyer and McRobbie [1982a,b] uses
multisets in an illuminating study of relevant logics.
20 Every ternary relational frame for the logic R+ induces a reflexive multiset frame that obeys a
contraction principle. As mentioned above, some ternary relational frames for R+ can be shown
not to induce a reflexive set frame.
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Suppose that exactly one of X and Y is { }, say X. Then
⊔
(X ∪ Y) =

⊔
Y =

0 t
⊔

Y =
⊔

X t
⊔

Y.
Suppose that X = {x1, . . . , xn} and Y = {y1, . . . , ym}. Then, we have⊔

(X ∪ Y) =
⊔

{x1, . . . , xn, y1, . . . , ym}.

In virtue of the semilattice frame conditions we have⊔
{x1, . . . , xn, y1, . . . , ym} =

⊔
{x1, . . . , xn} t

⊔
{y1, . . . , ym},

with (S2)–(S3) being used to separate out the xi’s from the yj’s, and (S4) being used
to duplicate or collapse some elements in case X ∩ Y , ∅. Finally, from definitions,
we obtain ⊔

{x1, . . . , xn} t
⊔

{y1, . . . , ym} =
⊔

X t
⊔

Y,

which suffices for the desired identity,
⊔
(X ∪ Y) =

⊔
X t
⊔

Y.
For Transitivity, suppose thatXRx and ({x}∪Y)Ry. Then

⊔
X = x and xt

⊔
Y =

y. It follows that
⊔

X t
⊔

Y = y, so
⊔
(X ∪ Y) = y, so (X ∪ Y)Ry.

For Evaluation, suppose that (X ∪ Y)Ry. Then
⊔

X t
⊔

Y = y. As
⊔

X = z, for
some z, XRz and z t

⊔
Y = y, so ({z} ∪ Y)Ry, as desired.

The functionality conditions are secured by the fact that
⊔

is a function.

For a given semilattice frame, the source frame, say that the preceding construction
induces the set frame defined, which will be called the induced frame. All semilattice
frames induce functional set frames. What about the converse? Do all functional set
frames induce semilattice frames? Yes, as will be shown. I will prove a lemma first.
Lemma Let 〈P, R〉 be a functional set frame. For the x such that { }Rx, ({x} ∪ X)Ry
iff XRy. �

Proof The left to right direction follows from Transitivity and the assumption that
{ }Rx. The right to left direction follows fromEvaluation and the fact thatX = X∪{ }.�

Lemma Let 〈P, R〉 be a functional set frame. Then 〈P,t, 0〉 is a semilattice frame,
where 0 is the x such that { }Rx, and for x, y ∈ P, x t y = z iff {x, y}Rz. �

Proof We need to show that 0 and t are well defined and obey the appropriate
conditions. First, the uniqueness of 0 follows from the functionality of R.

Next, we show that t is well-defined.
For all x, y ∈ P, there is a z such that {x, y}Rz, as R is functional. Suppose that

x t y = z and x t y = z ′. Then {x, y}Rz and {x, y}Rz ′. As R is functional, this
implies z = z ′. We conclude t is well-defined.

Finally, we show that t satisfies the conditions on semilattice frames.
Since {x}Rx and {x} = {x}∪{ }, from the preceding lemma, {0, x}Rx, so 0 t x = x.
Since {x, y} = {y, x}, {x, y}Rz iff {y, x}Rz, so x t y = z = y t x.
As {x, x} = {x} and {x}Rx, by definition, {x, x}Rx, so x t x = x.
Let {x, y, z}Rw. By Compositionality, for some v, {x, y}Rv and {v, z}Rw, so

x t y = v and v t z = w. By Compositionality again, for some v ′, {y, z}Rv ′ and
{x, v ′}Rw, so y t z = v ′ and x t v ′ = w. So, x t (y t z) = w = (x t y) t z.
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The preceding lemmas show that semilattice frames induce functional set frames
and, conversely, functional set frames induce semilattice frames. The induced frames
have a close connection with the source frames. I will prove two “round trip”
theorems, showing that the constructions given above do not result in any changes
when performed in succession.21 They are, in a sense, inverses.

For the next results, it will be useful to define some notation. Given a source
semilattice frame M, let Mσ be the induced functional set frame as defined in
lemma 9. Given a source functional set frame N, let Nλ be the induced semilattice
frame as defined in lemma 11.

Theorem Let M = 〈PM,tM, 0M〉 be a semilattice frame. Then M = Mσλ. �

Proof The constructions keep the set of points the same, so PM = PMσ = PMσλ .
By definition, 0M = 0Mσ . As { }RMσ0Mσ , 0Mσλ = 0Mσ , whence 0M = 0Mσλ .
Suppose x tM y = z. This is the case iff {x, y}RMσz, which is equivalent to

x tMσλ y = z. This suffices for the showing that tM = tMσλ . �

Theorem Let M = 〈PM, RM〉 be a functional set frame. Then M = Mλσ. �

Proof As in the proof of the previous theorem, the constructions do not change the
sets of points, so PM = PMλ = PMλσ .

Let X ∈ P be arbitrary and suppose XRMy. There are three subcases depending
on X.

Suppose X = { }. Then y = 0Mλ , so XRMλσy.
Suppose X = {x}. Since M is functional, there is a y such that XRMy. Then

{x}RMx implies x = y. Thus,
⊔
Mλ X = y, so XRMλσy. The converse is similar.

Suppose X = {x1, . . . , xn}, for some n ≥ 2. From repeated application of
Evaluation, there are z1, . . . , zn−1 such that {x1, x2}RMz1, {z1, x3}RMz2, . . . ,
{zn−1, xn}RMy. By definition, x1 tMλ x2 = z1, . . . , and zn−1 tMλ xn = y.
It then follows that

⊔
Mλ {x1, . . . , xn} = y. Therefore XRMλσy, as desired. The

converse is similar.

The final piece required for the connection between the logics of these two classes
of frames is to show that the models built on a source frame and an induced frame
agree on the evaluation of formulas. I will now prove that with two lemmas.

Lemma Let M = 〈P,t, 0〉 be a semilattice frame. If 
SL is a verification relation
on M, then 
Set is a hereditary verification relation on Mσ, where x 
Set p iff
x 
SL p. Moreover, for all x ∈ P and all formulas A, x 
Set A iff x 
SL A �

Proof The coherence of the definition is straightforward from the definition. Hered-
ity then follows as {x}Ry implies x = y from the functionality of R.

The second part of the claim is proved by induction on formula structure. The
base case holds by definition. The cases where A is of the form B∧C or B∨C are
immediate by the inductive hypothesis.

SupposeA is of the form B → C. Then, x 
Set B → C iff for all y, z, if {x, y}Rz
and y 
Set B then z 
Set C. Let y be an arbitrary point such that y 
SL B. As R is
21 I thank Lloyd Humberstone for the suggestion of proving these theorems.
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functional, there is a z such that {x, y}Rz. By the inductive hypothesis, y 
Set B, so
z 
Set C. By the inductive hypothesis, z 
SL C. As {x, y}Rz, xty = z. Therefore,
so x t y 
SL C. Therefore, x 
SL B → C.

Suppose x 
SL B → C. Let y, z be arbitrary points such that {x, y}Rz and
suppose y 
Set B. By the inductive hypothesis, y 
SL B. Therefore, xt y 
SL C.
Since {x, y}Rz, x t y = z, so it follows that z 
SL C. By the inductive hypothesis,
z 
Set C, which establishes that x 
Set B → C.

From the preceding lemma, we can see that the logic of functional set frames is
contained in the logic of semilattice frames.

Theorem For all formulas A, |=Fun A only if |=SL A. �

As there are no conditions on verification relations in semilattice frames, we can
prove the following lemma.

Lemma Let
Set be a verification relation on a functional set frameN = 〈P, R〉 and
let 〈P, 0,t〉 be Nλ. Define a semilattice verification 
SL as x 
SL p iff x 
Set p.
The result is a semilattice model. Moreover, for every x ∈ P and formulaA, x 
SL A
iff x 
Set A. �

Proof The initial portion of the corollary is immediate from the preceding lemma.
The moreover portion follows from a straightforward induction on formula complex-
ity. We will present the B → C case, as it is the only non-trivial one.

Suppose x 
Set B → C. Then, for all y, z such that {x, y}Rz, if y 
Set B, then
z 
Set C. Let y be arbitrary and suppose y 
SL B. By the inductive hypothesis,
y 
Set B. Since R is functional, for some z, {x, y}Rz, so z 
Set C. By the inductive
hypothesis again, z 
SL C. Since {x, y}Rz, x t y = z, so x t y 
SL C, which
suffices for x 
SL B → C.

Suppose x 
SL B → C. Then for all y, if y 
SL B then xty 
SL C. Let y, z be
arbitrary points such that {x, y}Rz. Suppose y 
Set B. By the inductive hypothesis,
y 
SL B, so x t y 
SL C. Since {x, y}Rz, x t y = z, so z 
SL C. By the inductive
hypothesis z 
Set C, which suffices to establish x 
Set B → C. �

This corollary suffices for the following theorem.

Theorem For all formulas A, |=SL A only if |=Fun A. �

There is, then, a match between the valid formulas of semilattice frames and those
of functional set frames.

One more theorem remains to be proved, showing that the logic of functional set
frames properly extends the logic of set frames.

Lemma There is a formula A such that A is valid in the class of functional set
frames but not valid in the class of set frames. �

Proof For the formula, we take (p → (q ∨ r)) ∧ (q → r) → (p → r), which
is valid in semilattice frames but is not a theorem of R+, as noted by Urquhart
[1972a, 163] who attributes it to Dunn and Meyer. A simple non-functional set
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frame counterexample to this in the class of all set frames can be found. For this
counterexample, let P = {a, b, c} and R defined as in Table 1. R so defined is
a reflexive, compositional set relation. The valuation given in Table 1 is trivially

R

{ } b
{a} a
{b} b
{c} c

R

{a,b} a
{a,c} a,b,c
{b,c} c

{a,b,c} a,b,c



a r
b q
c p, r

Table 1 Counterexample

hereditary. It suffices to refute (p → (q∨ r))∧ (q → r) → (p → r) to find a point
x at which the antecedent of the implication is true but the consequent is not, for
which we will use a. Since {a, c}Rb, while c 
 p and b 6
 r, a 6
 p → r. It remains
to verify that a 
 p → (q ∨ r) and a 
 q → r. For the former, note that q ∨ r is
true at all points, although it is in virtue of the q disjunct at b and in virtue of the r
disjunct at the other points. For the latter, the only point at which q is true is b, and
the only point that {a, b} bears R to is a, which has r true. �

This lemma suffices for the desired theorem.

Theorem The set of formulas valid in the class of all set frames is a proper subset
of the set of all formulas valid in the class of all functional set frames, which is UR.
In symbols, there is a formula A such that |=Fun A but 6|=Set A. �

Proof Immediate from the preceding lemma. �

The results of this section situate set frames with respect to the well known
semilattice frames. Functional set models and semilattice models line up neatly.
They generate the logic UR. Further, the procedure of inducing one frame type
from the other takes you back to where you started after two steps. We can see
points in a functional set frame as pieces of information, as suggested in the context
of semilattice frames by Urquhart [1972a], and sets of points are collections of
information. Combining these collections of information is done via set union,
which pleasantly coincides with Urquhart’s original notation.

Stepping back, we see that UR is not sound for the class of all set frames. R+ is
sound for the class of all set frames but it is currently unknownwhether it is complete
with respect to that class.22 Finally, I will note that essentially the same arguments
show the same fit between functional multiset frames and operational frames that
drop postulate (S4), xx = x, but retain the others.

22 The stumbling block for proving completeness, briefly, is that the canonical frame forR+ appears
to be one of those ternary relational frames that does not induce a set frame.
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