
Ignorance and the possibility of error in
relevant epistemic logic

Abstract

In this paper, I will present two approaches to epistemic logic in the
setting of relevant logics. One uses the framework of equivalence classes
representing indistinguishability, found in much work in epistemic logics.
The other, does not use equivalence classes, but is more common in the area
of relevant logics. I will argue that the former has many advantages over the
latter while avoiding some of the standard criticisms leveled against the use
of equivalence relations in classically based epistemic logic.

1 Introduction
One conception of knowledge in epistemic logics is that something is known if it
is true in all epistemic alternatives. The epistemic alternatives at a given world,
in turn, are the worlds that the agent cannot distinguish, given their background
information. This idea of indistinguishability is formalized using equivalence
relations in Kripke models. This modeling is in intuitive and powerful, and it is
arguably the default modeling epistemic logic.1 Nonetheless, the modeling and
its logic have faced criticisms. In this paper, I will examine this conception of
knowledge against the backdrop of relevant logics, in particular the logic R. I will
argue that in the context of R, this conception of knowledge can evade many of
the criticisms leveled against it. I further identify three related, plausible epis-
temic logics and comment on their relations. To begin, in §2, I provide back-
ground on a standard approach to epistemic logics using equivalence classes. In
§3, I present the frames and axioms for R. In §4, I present three plausible epis-
temic extensions of R, focusing on two defined in terms of equivalence classes.

1See Meyer and van der Hoek (1995), van Ditmarsch et al. (2015), or Rendsvig et al. (2023).
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Finally, in §5, I summarize the results of the earlier sections and highlight ways
in which the logics relate to issues of logical omniscience.

2 Epistemic logics
Epistemic logics are most often studied with classical logic as the base logic.2 The
main results of this paper will concern an alternative base logic, but it will be
useful to have the backdrop of standard epistemic logics in place before proceed-
ing. We will throughout work in a propositional languageLwith the connectives
{¬,→,∨,∧,2} and a countably infinite set of atoms At = {p, q, r, . . .}. The sin-
gulary operator 2 will be the knowledge operator of the epistemic logics. We will
define the possibility operator, ♦, as ¬2¬.

The equivalence conception of knowledge is formalized using equivalence re-
lations in Kripke frames.3 Kripke frames with equivalence relations are the only
sorts of Kripke frames used in this paper, so I will call them classical partition
frames.

Definition 2.1 (Equivalence relation). A binary relation S on a setX is an equivalence
relation iff it satisfies satisfies the three conditions

• ∀x ∈ X, Sxx (reflexivity),

• ∀x, y ∈ X, if Sxy, then Syx (symmetry), and

• ∀x, y, z ∈ X, if Sxy and Syz, then Sxz (transitivity).

For an equivalence relationS on a setX, we will define the notation [w] = {x ∈ X : Swx}.
The sets [w] are equivalence classes.

Definition 2.2 (Classical partition frames). A classical partition frame is a pair 〈W,S〉
whereW 6= ∅ and S is an equivalence relation onW.

The relationS represents indiscernibility from the agent’s point of view. Given
the agent’s background information, the agent cannot distinguish any of the worlds
in a given equivalence class. These worlds are all the epistemic alternatives from
any world in that class.

To define models, we add a valuation function.
2See van Ditmarsch et al. (2007) and Humberstone (2016, ch. 5) for some examples and refer-

ences.
3In Kripke frames, it is more common to use ‘R’ for the binary relation, but we will reserve this

for the ternary relation of the frames for relevant logics.
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Definition 2.3 (Partition models). Let 〈W,S〉 be a classical partition frame. 〈W,S, V〉
is a partition model whereV : At 7→ ℘W.

The verification relation,, for the language is defined inductively as follows.

• w  p iffw ∈ V(p)

• w  ¬B iffw 6 B

• w  B∧ C iffw  B andw  C

• w  B∨ C iffw  B orw  C

• w  B→ C iffw 6 B orC 

• w  2B iff for all x ∈ [w], then x  B

Given the definition of models, we can define validity.

Definition 2.4 (Validity). A formula B is valid on the class classical partition frames iff
for all models built on a classical partition frame, for allw ∈W,w  B.

The logic that results from this definition is S5. An axiomatization of S5 can
be had by adding the following axioms and rule to classical logic, including the
rule modus ponens. I will use ‘A1, . . . , An ⇒ B’ for the rule from the formulas
A1, . . . , An to the conclusion B.4

• 2(A→ B) → (2A→ 2B) (K)

• (2A∧ 2B) → 2(A∧ B) (Agg)

• 2A→ A (T)

• 2A→ 22A (4)

• ¬2A→ 2¬2A (5)

• A→ 2¬2¬A (B)

4 The two rules in this list are, in Smiley’s terminology, rules of proof, taking one from the-
orems to theorems. Rules of proof are contrasted with rules of inference, which take one from
truths to truths. See Humberstone (2010) for discussion of this distinction, and see Brady (1994)
for some discussion in the context of relevant logics. The logics in this paper are in the framework
fmla of Humberstone (2011), so the distinction between types of rules does not arise, but it would
arise if one considered consequence relations, or set-fmla logics.
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• A⇒ 2A (Nec)

• A→ B⇒ 2A→ 2B (Mono)

This axiomatization is redundant, but the redundancies will facilitate the later
discussion. So, I will leave them in. It is worth noting that given the other axioms
and rules, (B) and (5) are interderivable. In terms of frames, the axioms (T),
(4), (B), and (5) all correspond to S-based conditions on a frame 〈W,S〉, in the
sense that for a given frame 〈W,S〉, S obeys the condition if and only if the axiom
is valid on the frame. (T) corresponds to reflexivity, (4) to transitivity, and (B)
to symmetry. (5) corresponds to a condition known as euclideanness, which is
equivalent to symmetry given reflexivity and transitivity.

The epistemic logic S5 represents an idealization, since the knowers whose
knowledge it codifies have unlimited memory and inferential capacities. While
the logic S5 and its frames are perahps the starting point for epistemic logics, it
does not have many defenders as it seems to represent overly idealized agents.
Stalnaker (2006) has offered a limited defense of this idealization, although he
thinks the modeling has serious flaws. Yap (2014) has defended idealizations in
epistemic logic, generally and not just for the specific case of interest.

The logic S5 has been criticized in many different ways as an epistemic logic.5

I will focus on criticisms directed at the (B) and (5) axioms, as these two prin-
ciples are interderivable given the background principles. Hintikka has argued
that the idealizations inherent in an S5 approach to knowledge are implausi-
ble because “[i]t is not true that everybody could come to know the possibility
of any fact whatsoever simply by following the consequences of what he already
knows.”6 Stalnaker (2006, 173) regards this objection as clear and decisive. As
Hintikka notes, the mere fact that p is true need not imply that one knows that
p is consistent with one’s knowledge, where ‘¬2¬p’ formalizes the claim that p
is consistent with one’s knowledge. There is an apparent gap between matters of
non-epistemic fact and knowledge about one’s epistemic states, so the (B) axiom
must go, and along with it (5).

In the context of epistemic logics, (5) is often known as the negative introspec-
tion axiom, since not knowing something implies that one knows it is not known.
It has come under much criticism as well. Hintikka (1962, 106) rejects it as implau-
sible, as does Humberstone (1988, 187). The reason is that one might, when p is

5See Humberstone (2016, ch. 5) for an overview of objections in the context of an epistemic
logic of knowledge and belief.

6Hintikka (1962, 54.)
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false, mistakenly take oneself to know p, on the basis of misleading though per-
suasive evidence. The falsity of p would imply that one does not know p, and by
(5), one knows that one does not knowp. Given this knowledge, the agent should
be able to see that they have made a mistake, even though they take their evidence
to be conclusive. As Stalnaker (2006, 177) puts it, the (5) principle “require[s] that
rational agents be immune to error.” The possibility of error is important in epis-
temology, and plausibly epistemic logics should allow for that possibility.

The (5) axiom is inconsistent with so-called Rumsfeld ignorance, that there are
unknown unknowns.7 The inconsistency is immediate, since (5) says that if a
claim is unknown, then one knows that it is unknown. It is plausible that the cat-
egory of unknown unknowns is not incoherent, since it does seem that there are
many things that are unknown and we are ignorant of that fact as well. Echo-
ing Hintikka (1962, 106), “you may fail—unless you happen to be as sagacious as
Socrates—to know your ignorance.” The plausibility of the category of unknown
unknowns provides additional reason to be suspicious of the (5) principle.

Further objections to the (5)principle arise in epistemic doxastic logics, which
combine an operator for belief, B, with the epistemic operator for knowlege, 2.
In such logics, one adopts plausible bridge principles relating belief and knowl-
edge, such as 2A → BA and BA → B2A. Humberstone (2016, 373ff.) illus-
trates the problems that arise from (5) by presenting an argument due to Wolf-
gang Lenzen. Starting from the assumption that the agent has a false belief, rep-
resented as ¬p ∧ Bp, one can derive that the agent has contradictory beliefs,
namelyB2p∧B¬2p. Depending on the logic of belief, this result may be disas-
trous or merely extremely unsavory. Of the principles involved in the derivation,
(5) appears to be the least plausible. Given the other problems with (5), it seems
to be the natural place to pin the blame.

Williamson (2000, 166-167) argues that there are important epistemic asym-
metries that arise in knowledge. In certain skeptical scenarios there is a good
case, where one isn’t being deceived, and a bad case where one is. If one is in
the good case, the bad case is not epistemically accessible, while if one is in the
bad case, then the good case is epistemically accessible. This sort of consider-
ation provides a reason for rejecting the symmetry condition on S. Rejecting
the symmetry of S brings with it a rejection of axioms (B) and (5). I will note
that Williamson offers a more general argument, the anti-luminosity argument,
against principles of the form → 2 . Such an argument cuts against the (5)
axiom, as well as the (4) axiom, but I will not have anything further to say on the

7See Humberstone (2016, 371), Fine (2018), and Fan (2023) for more on Rumsfeld ignorance.
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luminosity issue.
The epistemic logics discussed so far have all used classical logic. There is in-

creasing interest in the use of non-classical logics in epistemic logics. There are
two ways one might go about using non-classical logics. One is to keep the base
logic classical while using a non-classical logic within the scope of the epistemic
operators. This approach is adopted by Fagin and Halpern (1987), Levesque and
Lakemeyer (2001), Sedlár and Vigiani (2023), Ferenz (2023), and Standefer et al.
(2023), among others. This approach attempts to combine the features of clas-
sical logic in the base language with non-classical logic providing closure con-
ditions on the epistemic concepts. On this approach, within the scope of epis-
temic modal operators, one is restricted to using the non-classical logic so that
the consequences of a formula within the scope of an epistemic modal may dif-
fer from the consequences outside the scope of any epistemic modal. The second
approach is to use a non-classical base logic instead of classical logic and add an
epistemic extension. This approach is adopted by Bı́lková et al. (2016), Bilková
et al. (2010), Sedlár (2015, 2016), and Punčochář et al. (2023), among others. The
approach pursued below falls in this second category. I will use the relevant logic
R as the base logic and study some epistemic extensions of it. With that, let us
turn to the background on R.

3 Relevant logics
Relevant logics are logics whose implication connective enforces a strong con-
nection between antecedent and consequent.8 The most famous relevant logic is
perhaps the logic R of Anderson and Belnap (1975), and that is the logic on which
I will focus for this paper.9 Focusing on R will facilitate comparison with the re-
sults of Standefer (2023b), but most of the results will carry over to other relevant
logics as well. Relevant logics have been studied axiomatically, algebraically, and
frame-theoretically, and in this section I will present axioms for R as well as the
ternary relational frames for it.

Definition 3.1 (Ternary relational frames). A basic ternary relational frame F is a
quadruple 〈K,N, R,∗ 〉, whereK 6= ∅,N ⊆ K, R ⊆ K3, ∗ : K 7→ K, where

(B1) a ≤ b=Df ∃x ∈ N, Rxab,
8See Read (1988),Dunn and Restall (2002), Bimbó (2007), Mares (2020), Logan (2024) for

overviews of relevant logics.
9See Mares (2004) for an extended defense of R.
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(B2) ≤ is a partial order,

(B3) a∗∗ = a,

(B4) a ≤ b only if b∗ ≤ a∗, and

(B5) if d ≤ a, e ≤ b, c ≤ f, and Rabc, then Rdef.

A basic ternary relational frame is an R-frame, or a ternary relational frame, iff it obeys
the following conditions.

(C1) Rabc⇒ Rac∗b∗

(C2) Rabc⇒ Rbac

(C3) Rabcd⇒ ∃x ∈ K(Rbxd and Racx)

(C4) Rabc⇒ ∃x ∈ K(Rabx and Rxbc)

Separately listing the conditions on the basic frames and on the R-frames can
be useful for seeing how seldom the additional features of R-frames are invoked.
Since we are only considering R-frames in this paper, we will not refer to any
frames as ‘basic ternary relational frames’.

Before proceeding, it will be worth commenting on a few aspects of the frames.
First, the points in the set K are often viewed as being situations, which are par-
tial and potentially contradictory, as opposed to worlds, which are maximally de-
terminate and consistent. Worlds, as maximal situations, will play no role in the
discussion of this paper, although they are used by some relevant logicians.10 Sec-
ond, given that understanding of the points, the relation ≤ is naturally under-
stood as a kind of mereological containment relation. If a ≤ b, then the situa-
tion b contains the situation a. There is no requirement that there be a greatest
situation containing any pair of situations.

The Routley star, ∗, and its interpretation will play an important role in the
epistemic logics, and I will return to it and its interpretation in the next section.
The ternary relation, while important in the models, will not play a major role in
the philosophical interpretation of the epistemic logics. Therefore, I will not take
a stand on its interpretation here.11

Next, we define models and the verification relation.
10See Meyer and Mares (1993) for an example.
11See Beall et al. (2012), Restall (2005), Mares et al. (2010), and Tedder (2023, 2021) for discus-

sion of interpretations of the ternary relation. For critical commentary on it, see Brady (2017).
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Definition 3.2 (Model). A modelM is a pair 〈F, V〉 of an R-frame F, 〈K,N, R,∗ 〉, and
a valuation function V : At 7→ ℘K such that if a ∈ V(p) and a ≤ b, then b ∈ V(p).
Such a model is built on F.

The valuation function is extended to a verification relation on the whole lan-
guage as follows.

• a  p iff a ∈ V(p)

• a  ¬B iff a∗ 6 B

• a  B∧ C iff a  B and a  C

• a  B∨ C iff a  B or a  C

• a  B→ C iff for all b, c ∈ K, if Rabc and b  B, then c  C

Given this definition of the verification relation, we can provide the standard def-
initions of counterexample and validity.

Definition 3.3 (Counterexample, validity). A modelM is a counterexample to a for-
mulaA iff for some a ∈ N, a 6 A. The point a is a counterexample point.

A formulaA is valid on a frame F iff no model built on F is a counterexample toA.
A formulaA is valid over a class of frames C iffA is valid on each frame F ∈ C.
Write |=C A whenA is valid over the class of frames C and write |=R A whenA is

valid over the class of R-frames.

I will note, without proof, two important lemmas appealed to without com-
ment.

Lemma 3.1 (Heredity). For all A in the language, for any model M, if a  A and
a ≤ b, then b  A

Lemma 3.2 (Verification). The following are equivalent.

• For all a ∈ N, a  A→ B.

• For all b ∈ K, if b  A, then b  B.

Both of these lemmas extend to the language of the next section, once knowledge
operators are introduced.

Next, I will provide an axiomatization of R. The logic R is the least set of
formulas containing axioms (R1)–(R11) and closed under the rules (R12) and
(R13).
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(R1) A→ A

(R2) A∧ B→ A,A∧ B→ B

(R3) ((A→ B)∧ (A→ C)) → (A→
(B∧ C))

(R4) A→ A∨ B, B→ A∨ B

(R5) ((A→ C)∧ (B→ C)) → ((A∨

B) → C)

(R6) A∧(B∨C) → (A∨B)∧(A∨C)

(R7) (A→ ¬B) → (B→ ¬A)

(R8) ¬¬A→ A

(R9) (A→ (A→ B)) → (A→ B)

(R10) A→ ((A→ B) → B)

(R11) (A → B) → ((B → C) → (A →
C))

(R12) A,A→ B⇒ B

(R13) A,B⇒ A∧ B

Proof is defined in the usual way, as a sequence of formulas each of which is an
axiom or follows from earlier members of the sequence by rules. We will write
`R A to mean thatA has a proof and so is a theorem of R.

Belnap’s variable-sharing property is an important feature of relevant logics,
and it is arguably what makes them relevant logics.

Definition 3.4 (Variable-sharing Property). A logic L has the variable-sharing prop-
erty iff for all formulasA andB, if`L A→ B, thenA andB share a propositional atom.

The variable-sharing property is preserved downwards to sublogics, a feature
that will become important later. One of the crucial features of R is that it enjoys
Belnap’s variable-sharing property.

Theorem 1. R has the variable-sharing property, i.e. for all formulas A and B, if `R
A→ B, thenA andB share a propositional atom.

Proof. See Anderson and Belnap (1975, 252-254) or Restall (2000, 184-185) for a
proof using matrix methods.

The variable-sharing property provides a minimal level of formal relevance
for valid implications and is typically taken as a necessary condition on being
a relevant logic.12 If a logic does not enjoy the variable-sharing property, then
it is, consequently, not a relevant logic. Classical logic is a paradigm example
of a non-relevant logic, with theorems such as p → (q → q). The addition

12See Standefer (202x) for a discussion of variable-sharing as a characterization of relevant
logics.

9



of new connectives to a relevant logic may lead to violations of variable-sharing,
as is the case with the universal modality considered by Standefer (2023b).13 It
is, therefore, important for the relevant logician to verify that the addition of a
connective to a relevant logic does not lead to violations of variable-sharing. This
issue will be taken up again in the next section.

The axiom system above is adequate for the frame semantics of this section
in the sense that it is sound and complete.

Theorem 2. For all formulasA, `R A iff |=R A.

Proof. See Routley et al. (1982, ch. 4) for a proof.

That is enough background on the base logic, R. In the next section, I will de-
fine some epistemic extensions of R. Some of these will be defined axiomatically
and some will be defined by classes of frames. Both approaches, however, build
on the presentations of R in this section.

4 Relevant epistemic logics
Having defined the base relevant logic and its frames, we can turn to the epis-
temic extensions. The epistemic logic of classical partition frames in §2 is S5,
and that would be the natural neighborhood to look for epistemic extensions of
R. As shown by Standefer (2023b), there are distinct options for an S5-ish logic
extending R, but I will initially focus on two. There is the logic RS5 obtained ax-
iomatically and the logic Eq obtained by expanding the ternary relational frames
with an equivalence relation. While the use of equivalence relations is common
in epistemic logics over classical logic, they have been studied much less in the
context of relevant logics.

To define RS5, we add to R the several axioms and rules, adjusting the defi-
nition of proof and theorem accordingly. Those principles are just the ones from
section §2 used to axiomatize S5 in the classical setting: (Agg)] (2A ∧ 2B) →
2(A ∧ B), (K) 2(A → B) → (2A → 2B), (T) 2A → A, (4) 2A → 22A,
(B) A → 2¬2¬A, (5) ¬2A → 2¬2A, (Nec) A ⇒ 2A, and (Mono) A →
B⇒ 2A→ 2B. In many ways, the theorems of RS5 are close to those of S5, but
the former are properly contained in the latter. Apart from the base logic R not
being as strong as classical logic, there are properly modal theorems of S5 that

13See Standefer (2022b) for a discussion of the role of variable-sharing in adding new connec-
tives to relevant logics.
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are not theorems of RS5. Two of which that will appear later are 2(A ∨ B) →
(2A∨ ¬2¬B) and 2(2A∨ B) → (2A∨ 2B).

To provide frames for the modal logic RS5, we add a binary accessibility rela-
tion, S, to ternary relational frames.

Definition 4.1 (RS5-frame). AnRS5-frame is a quintuple 〈K,N, R, S,∗ 〉, where 〈K,N, R,∗ 〉
a ternary relational frame and S ⊆ K2, obeying the following conditions.

(S1) If Sbc and a ≤ b, then Sac.

(S2) If a ∈ N and Sab, then b ∈ N. (Nec)

(S3) Saa. (T)

(S4) If Sab and Sbc, then Sac. (4)

(S5) If Sab, then Sb∗a∗. (B)

(S6) If ∃z(Rabz and Szc), then ∃x∃y(Sax, Sby, and Rxyc). (K)

The definitions of model, counterexample, holding, and validity are all adapted
in a straightforward way. The verification condition for 2 is the following.

• a  2B iff for all b such that Sab, b  B

Soundness and completeness of RS5 with respect to these frames was proved
by Fuhrmann (1990). In the context of RS5-frames, the (B) axiom corresponds
to the condition that if Sab then Sb∗a∗. This means that the S relation is not
generally an equivalence relation. Given the other conditions, it turns out that
there are stringent limits on what sort of equivalence relations are available for
RS5-frames, because some equivalence relations invalidate the (Nec) principle,
as we shall see.

Generally, the S relation in RS5 models does not represent indiscernibility,
as it is not an equivalence relation. It does not have as neat an epistemic inter-
pretation as one finds with the equivalence relations. Punčochář et al. (2023) say,
in effect, that {b ∈ K : Sab} is the epistemic state of the agent at the situation a,
the set {b ∈ K : Sab} is a particular body of information for the agent at that sit-
uation. This is a slightly different conception of knowledge, knowledge as what
is supported by one’s information state, than one finds with the equivalence rela-
tions. Despite this difference, RS5 has many pleasant features, such as the usual
collapse of modalities, and it need not totally undermine the appeal of RS5 as a
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logic for knowledge. Rather, the RS5-models are modeling a different concep-
tion of knowlecge than the classical partition models. It is unfortunate to give up
on the intuitive picture offered by the use of equivalence relations to represent
indistinguishability, so I will turn to the logic of the equivalence conception of
knowledge, Eq, to be defined below.

Definition 4.2 (Equivalence frame). An equivalence frame is a quintuple 〈K,N, R,≈
,∗ 〉, where 〈K,N, R,∗ 〉 is a ternary relational frame and≈ is an equivalence relation on
K, obeying the condition that if a ≤ b and b ≈ c, then there is x ∈ K such that x ≤ c
and a ≈ x.

The class of equivalence frames will be denoted Eq.

Validity is adapted in the obvious way, and we will write |=Eq A whenA is valid
over Eq.

This definition of equivalence frame differs from that of Standefer (2023b) in
the interaction condition between≤ and≈. The condition of Standefer (2023b)
is that if a ≤ b and b ≈ c, then a ≈ c. This is the interaction condition used by
RS5-frames. The condition adopted in definition 4.2 is weaker than the condition
for RS5-frames, and it is also more plausible from an epistemic point of view.14

If two points, b and c are indistinguishable, namely b ≈ c, and b contains a,
a ≤ b, generally one would not expect a and c to be indistinguishable. Perhaps
c contains a lot of things that are entirely absent from a. For example, suppose
that situation b involves an apartment, α1, with two rooms, a bedroom and a
kitchen, while situationc involves a distinct but indistinguishable apartment,α2,
with two rooms, a bedroom and a kitchen. Then, situation awill involve just the
kitchen of α1. While b and c are indistinguishable, it does not follow that a and
c are, since c contains a bed while a does not. Rather, there is a part of c, which
we can call d, that involves only the bedroom of α2, and, plausibly, a and d are
indistinguishable. Therefore, I take the interaction condition to be motivated.

The verification condition for 2, presented using≈, is the following.

• a  2B iff for all b such that a ≈ b, b  B

With this in hand, we can define the logic Eq.

Definition 4.3 (The logicEq). The logicEq is the set of formulas valid on all equivalence
frames, i.e. the set {A ∈ L : |=Eq A}.

14We could correspondingly weaken the condition on RS5-frames without changing the logic.
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As shown by Standefer (2023b), the following principles are invalid on the
class of equivalence frames.

• (K)2(A→ B) → (2A→ 2B)

• (B)A→ 2¬2¬A

• (5)¬2A→ 2¬2A

• (Nec)A⇒ 2A

I will demonstrate the invalidity of (B), (5), and (Nec)here. I will begin by demon-
strating that (5) entails (B), given some additional background. While this is fa-
miliar from classical S5, it is worth reproducing in this non-classical context.15

Lemma 4.1. In any logic extending R with (T), (5) implies (B).

Proof. From (5), we get ¬2¬2¬A→ 2¬A via contraposition and double nega-
tion elimination. Using (T) and transitivity, we have ¬2¬2¬A→ ¬A. Contra-
posing again getsA→ 2¬2¬A, as desired.

To show the invalidity of (B), I will use the frame in table 1, whereK = {0, a, b}

andN = {0}. To read the table, the first column is the first position of the ternary
relation, the top row is the second, and the third position is represented by each
point in the middle cells. For example, the upper cell containing ‘0ab’ should be
understood as saying that Rab0, Raba, and Rabb. Similarly, the ≈ row for 0
means that 0 ≈ 0 and 0 ≈ b.

R 0 a b ∗ ≈
0 0 a b 0 0, b

a a a 0ab b a

b b 0ab b a 0, b

Table 1: Equivalence frame F1

Lemma 4.2. The frameF1without the equivalence relation in table 1 is a ternary relational
frame. Further, F1 with the equivalence relation is an equivalence frame.

15Since R is the only relevant logic discussed in this paper, the lemma concerns R. Inspection
of the proof reveals that it works for much weaker logics. Additionally, the converse entailment,
from (B) to (5) holds as well, but it is not needed for the following results.
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Proof. The proof is by inspection of all the conditions, which will be omitted here.

Lemma 4.3. (B) is invalid over the class Eq.

Proof. Let v(p) = {a, 0}. Then, a  ¬p, so a  2¬p. It then follows that b 6
¬2¬p. Therefore, 0 6 2¬2¬p, As 0  p, this is sufficient to invalidate p →
2¬2¬p.

Corollary 4.1. (5) is invalid over the class Eq.

Proof. This follows from the previous lemma and the fact that (T) is valid.

Next we turn to (Nec).

Lemma 4.4. The rule (Nec) fails for Eq.

Proof. LetM be a ternary relational model where for some pointa ∈ K,a 6 p→
p. We know there is such a model since q→ (p→ p) is not a theorem of R. Add
to this model an equivalence relation≈where for alla, b ∈ K, a ≈ b. Therefore,
for some b ∈ N, b 6 2(p→ p), as desired.

While many of the typical modal principles ofS5 fail forEq, some are valid, namely
(4), (T), and (Mono).

An important question was left open by Standefer (2023b): Does Eq satisfy
the variable-sharing criterion? This is an important question because being a
proper relevant logic requires an affirmative answer. I can provide an affirmative
answer to the former, namely that for allA and B, ifA → B is a theorem of Eq,
thenA and B share an atom. To prove this, I will use the frame in table 2, where
K = {0, a, b} andN = {0}.

R 0 a b ∗ ≈
0 0 a b 0 0

a a a 0ab b a

b b 0ab b a b

Table 2: Equivalence frame F2

Lemma 4.5. The frame F2 without the equivalence relation in table 2 is a ternary rela-
tional frame. Further, F2 with the equivalence relation is an equivalence frame.
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Proof. The underlying ternary relational frame is the same as the frame in table
2.

Lemma 4.6. LetA and B be formulas with no variables in common. Over the frame F2,
define a model as follows. For all atoms p occurring inA, let V(p) = {a}. For all atoms
q occurring inB, letV(q) = {b}. The following are true.

(i) For all formulasC only containing atoms occurring inA, a  C.

(ii) For all formulasC only containing atoms occurring inA, b 6 C.

(iii) For all formulasD only containing atoms occurring inB, b  D.

(iv) For all formulasD only containing atoms occurring inB, a 6 D.

Proof. For this proof,Cwill be used for formulas only containing atoms occurring
inA andDwill be used for formulas only containing atoms occurring in B. The
proof is by simultaneous induction on C and D. For atoms, the four cases are
immediate.

The cases for conjunction and disjunction are immediate by the inductive hy-
pothesis.

Suppose C is ¬E. By the inductive hypothesis, b 6 E, so a  ¬E. By the
inductive hypothesis again, a  E, so b 6 ¬E. The cases forD are similar.

Suppose C is E → F. Suppose that a 6 E → F, so for some x, y ∈ K, Raxy,
x  E and y 6 F. It follows from the inductive hypothesis that x ∈ {a, 0}. If
x = 0, then y = a. In that case, by the inductive hypothesis, y  F, which is a
contradiction. If x = a, then y = a, so there is a contradiction by the inductive
hypothesis.

Next, suppose that b  E → F. By the inductive hypothesis, a  E. Since
Rbab, b  F. By the inductive hypothesis, however, b 6 F, which is a contradic-
tion. Therefore, b 6 E→ F.

The remaining conditional cases are handled similarly.
The cases where C is 2E are immediate from the inductive hypothesis and

the fact that each equivalence class is a singleton.

Lemma 4.7. IfA andB share no atoms, thenA→ B has a counterexample on F2.

Proof. Over the frame F2, let V be a valuation such that

• for all atoms p occurring inA, V(p) = {a}, and
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• for all atoms q occurring in B, V(q) = {b}.

By lemma 4.6, a  A but a 6 B. ThereforeA → B does not hold in this model.

With those pieces in hand, I can prove the variable-sharing theorem.16

Theorem 3 (Variable-sharing for Eq). Suppose thatA→ B is a theorem of Eq. Then
A→ B share an atomic formula.

Proof. SupposeA andB do not share a variable. By lemma 4.7, it has a counterex-
ample on an equivalence frame. Therefore,A→ B is not a theorem of Eq.

Theorem 3 settles one of the questions left open by Standefer (2023b). The
logic Eq enjoys variable-sharing and is a reasonable candidate for an epistemic
relevant logic. The question of an axiomatization is still left open, but an ax-
iomatization is not needed to demonstrate variable-sharing using the technique
above.

The logic Eq has some nice features that make it appealing as an epistemic
logic. First, its frames use equivalence relations, so they appeal to the same sort of
intuitions about indiscernibility that we find with the classical partition frames.
They have a clear intuitive interpretation, as opposed to the situation with the
accessibility relation S in the RS5 frames. The intuitions behind the equivalence
conception of knowledge are worth preserving, at least as a starting point, since
they are so robust and so useful, as demonstrate by the logical work exploring
extensions of it.

Second, many of the criticisms of S5 as an epistemic logic focus on the (B)
and (5) axioms. Even in very weak relevant logics, these axioms are interderiv-
able, given the other modal principles, so they stand for fall together here as well.
Neither of these axioms is valid over Eq. Since relevant logics are paraconsis-
tent, one could have unknown unknowns along with the (5) axiom without the
logic collapsing into triviality. That would not be ideal, since the concept of un-
known unknowns is not on its face incoherent. The logic Eq allows there to be
unknown unknowns consistently. Similarly, the mere truth of a claim does not
on its own imply that an agent knows the truth of that claim is consistent with
their knowledge. The logic Eq does not build in unrestricted negative introspec-
tion in the way that S5 and RS5 do. Thus, the equivalence frames, and the logic

16It is worth noting that Brady et al. (2003, 100ff.) demonstrate a correspondence between the
frame F2 Belnap’s 8-valued matrixM0 used in Anderson and Belnap (1975) to show that R and E
enjoy variable-sharing.
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they generate, avoid some of the major criticisms leveled against their classical
counterparts.

The preceding considerations prompt the question of what sort of epistemic
agent Eq is supposed to model. The agents of Eq are highly idealized, since they
have no limits on memory or computational resources. They have unlimited pos-
itive introspection, as the (4) axiom is valid. Their powers of introspection are,
nonetheless limited in certain ways. The failure of the (5) axiom means that they
are unaware of their own ignorance, and one can consistently model situations in
which they do not know what they do not know. Similarly, the failure of the (B)
axiom means that they are limited in what consequences they draw from their
own knowledge. The fact that p is true need not imply that an agent know that p
is consistent with their knowledge, since they may be mistaken and their knowl-
edge is already inconsistent. The agents modeled by the equivalence frames ofEq
are in some respects highly idealized, but in other respects they are rather lim-
ited. This combination is, I think, potentially fruitful for further exploration of
epistemic concepts.

The source of the failure of the (B) and (5) axioms is due to the Routley star,
the part of the frame that interprets negation.17 While we may have two points,a
andb, in the same equivalence class, there is no guarantee that their stars,a∗ and
b∗, will be in the same class. The star does not respect the equivalence classes.18

17Rather than using the Routley star, one could use a binary compatibility relation to interpret
negation in the ternary relational models, following Dunn (1993) and Restall (1999), among others.
Compatibility generalizes the Routley star, and many of the same points made below will carry
over. Therefore, I will not further consider the use of compatibility relations.

One might also follow Dunn (1995) in wanting to consider what happens when one has a prim-
itive possibility operator, ♦, not defined in terms of negation and necessity. The short answer is
that it will depend on whether 2 and♦ are interpreted using distinct accessibility relations or not.
If they are, then the resulting logic will be similar to that of the coordinated equivalence frames
defined below. If they are not, which is the standard default option in this area, then the logic will
be similar to that of the equivalence frames, with the same axioms and being invalidated.

18This issue is arising because I am following the Australian plan for negation in relevant log-
ics, as defended by Berto (2015) and Berto and Restall (2019). An alternative is the American plan,
recently defended by De and Omori (2018). On the American plan, negation is not interpreted
using the star or a compatibility relation. Instead, one has a verification relation,+ and a falsi-
fication relation,−. One then has the conditions

• a + ¬B iff a − B, and

• a − ¬B iff a + B.

If one adopts this approach, no analog of the logic Eq will arise, as (B) and (5) will be valid. This
suggests that further consideration of both the Australian and American plans in the context of
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If, following Restall (1999), we think of b∗ as the point that is maximally com-
patible with b, it is plausible that one may be unable to distinguish situations a
and b while being able to distinguish a∗ and b∗. While one’s information does
not permit one to distinguish a and b, the information that the agent is lacking
may obscure important differences in the information of those two points. The
maximal point compatible withamay then be distinguishable from the maximal
point compatible with b, which is to say that a ∈ [b] need not imply a∗ ∈ [b∗].

While it is plausible to suppose that the star need not respect equivalence re-
lations, from a logical point of view it is worth considering the frames that result
from the assumption that the star does respect equivalence classes. This would
be the assumption that when two situations are indiscernible to an agent, the
situations maximally compatible with them are also indiscernible. For this as-
sumption to be plausible, agents would need more awareness of the information
omitted from a situation, since that is salient to determining what maximally
compatible situations. Intuitively, this would be an increased idealization of the
agents’ powers of negative introspection, but in order to make good on this idea,
let us define the frames at issue.

Definition 4.4 (Coordinated equivalence frames). An equivalence frame 〈K,N, R,≈
,∗ 〉 is a coordinated equivalence frame iff for alla, b ∈ K, [a] = [b] implies [a∗] = [b∗].

Let CEq be the class of all coordinated equivalence frames.
We will write |=CEq AwhenA is valid over CEq.

Definition 4.5 (The logic CEq). Let CEq the set of all formulas valid over CEq, i.e. the
set {A ∈ L : |=CEq A}.

Clearly, Eq ⊆ CEq. In fact, this containment is proper, as the logic of coordi-
nated equivalence frames is much stronger than that of equivalence frames.

Theorem 4. The following are valid over coordinated equivalence frames

(i) (B)A→ 2¬2¬A

(ii) (5)¬2A→ 2¬2A

(iii) (MC)2(A∨ B) → (2A∨ ¬2¬B)

Proof. We will prove that (5) is valid, leaving the rest to the reader. Suppose that
a  ¬2A but a 6 2¬2A. Then for some b ∈ [a], b 6 ¬2A. Therefore,

modal extensions of relevant logics would be worthwhile.
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b∗  2A, so for all c ∈ [b∗], c  A. As a  ¬2A, it follows that a∗ 6 2A. Since
b ∈ [a], it follows that [b∗] = [a∗]. With a∗ 6 2A, this implies that for some
c ∈ [b∗], c 6 A, which is a contradiction. Therefore, (5) is valid.

Corollary 4.2. Eq is properly contained in CEq.

There is still some distance from the RS5-frames with which we started, but
we can make a connection to another class of frames, relatives of some frames
studied by Mares (1994).

Definition 4.6 (Mares-Meyer modal frame). A Mares-Meyer modal frame is a quin-
tuple 〈K,N, R, S,∗ 〉, where 〈K,N, R,∗ 〉 a ternary relational frame andS ⊆ K2, obeying
the following conditions.

(MM1) If Sbc and a ≤ b, then Sac.

(MM2) If Sab, then ∃x(x ≤ b, Sax, and Sa∗x∗)

(MM3) Saa.

(MM4) If Sab and Sbc, then Sac.

(MM5) If Sab, then Sb∗a∗.

We can define a new relation, T , on a frame as follows.

• Tab iff both Sab and Sa∗b∗.

Using this definition, (MM2) can be written as if Sab, then ∃x(x ≤ b and Tax).
These frames are related to another class of frames that will be of interest to us,
Mares’s mostly Meyer modal models.

Definition 4.7 (MMR-frames). An MMR-frame is a quintuple 〈K,N, R, S,∗ 〉, where
〈K,N, R,∗ 〉 an R-frame and S ⊆ K2, obeying the following conditions.

(M1) If Sbc and a ≤ b, then ∃x(Sax and x ≤ c).

(M2) If Sab, then Sa∗b∗

(M3) Saa.

(M4) If Sab and Sbc, then Sac.
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(M5) If Sab, then Sb∗a∗.

These are of interest for the following reason.

Theorem 5. MMR-frames are coordinated equivalence frames.

Proof. First we show that S obeys symmetry. Suppose Sab. By (M2), Sa∗b∗. By
(M6), Sb∗∗a∗∗. As c∗∗ = c, for all c ∈ K, Sba. Since S obeys reflexivity and
transitivity, it follows that S is an equivalence relation.

Next, we show that if [a] = [b], then [a∗] = [b∗]. Suppose [a] = [b], so Sab.
By (M6), Sb∗a∗, so [a∗] = [b∗].

Using the work of Mares (1994), we have the following theorem.

Theorem 6. Given a Mares-Meyer modal frame 〈K,N, R, S,∗ 〉, 〈K,N, R, T,∗ 〉 is aMMR-
frame.

Proof. The proof follows that of section 7 of Mares (1994). The results extend to
the frames obeying postulates (M3)–(M5), as noted by Mares.

Given a Mares-Meyer modal frame 〈K,N, R, S,∗ 〉, one can construct an asso-
ciated coordinated equivalence frame, 〈K,N, R, T,∗ 〉using the previous theorem.
The addition of a valuation results in them agreeing pointwise on formulas.

Theorem 7. Let 〈K,N, R, S,∗ 〉 be a Mares-Meyer modal frame and 〈K,N, R, T,∗ 〉 the
constructed coordinated equivalence frame of theorem 6. LetM be the model obtained by
adding a valuation V to the Mares-Meyer modal frame and letN be the model obtained
by addingV to the constructed coordinated equivalence frame. Then, for alla ∈ K and all
formulasA, inM, a  A iff inN, a  A.

Proof. The proof is by induction on the construction ofA. See Mares (1994) lemma
7.3 for details.

Let HCEq be the logic R+{ (Agg), (Mono), (T), (4), (B), (5), (MC)}. The logic
HCEq is sound with respect to the class of Mares-Meyer modal frames.

Theorem 8. If A is a theorem of HCEq, then A is valid over the class of Mares-Meyer
modal frame.

Proof. The proof is by induction on the construction of proof inHCEq. Condition
(MM2) yields the validity of (MC). The rest are straightforward.

Corollary 4.3. IfA is a theorem of HCEq, thenA is a theorem of CEq.
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Finally, we come to Completeness.

Theorem 9. IfA is valid over the class of Mares-Meyer modal frames, thenA is a theorem
of HCEq.

Proof. The proof is by a standard canonical model construction. See Mares (1992,
1993), Restall (2000, ch. 11), or Standefer (2020) for examples.

Corollary 4.4. IfA is a theorem of CEq, thenA is a theorem of HCEq.

Proof. Given a non-theoremAofHCEq, we can construct a counterexample Mares-
Meyer modal model. Using theorems 6 and 7, we can construct an associated co-
ordinated equivalence frame that also serves as a counterexample.

Corollary 4.5. HCEq=CEq.

Given the axioms of HCEq, we can adapt the proof of variable-sharing due to
Belnap to show that CEq has the variable-sharing property.19

Theorem 10 (Variable-sharing for CEq). CEq enjoys the variable-sharing property.

Proof. We will use a matrix-based argument. The matrixM0 is presented in table
3. In this matrix, the set of designated values are the ones marked with +. A val-

+3

+1 +2

+0

−0

−1 −2

−3

→ −3 −2 −1 −0 +0 +1 +2 +3 ¬

−3 +3 +3 +3 +3 +3 +3 +3 +3 +3
−2 −3 +2 −3 +2 −3 −3 +2 +3 +2
−1 −3 −3 +1 +1 −3 +1 −3 +3 +1
−0 −3 −3 −3 +0 −3 −3 −3 +3 +0
+0 −3 −2 −1 −0 +0 +1 +2 +3 −0
+1 −3 −3 −1 −1 −3 +1 −3 +3 −1
+2 −3 −2 −3 −2 −3 −3 +2 +3 −2
+3 −3 −3 −3 −3 −3 −3 −3 +3 −3

Table 3: MatrixM0 for variable sharing

uation v assigns atoms values and the values of complex formulas are computed
19See Anderson and Belnap (1975, 252-254). This proof was similarly adapted for use with a

relevant modal logic by Standefer (2023b). Robles and Méndez (2011; 2012) for a general charac-
terization of matrices that can be used to demonstrate variable-sharing.
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using the tables. For the modals, we will use the condition v(2A) = v(A). The
validity of a formula on this matrix is defined as having a designated value on all
valuations. All the axioms of R are valid and the rules preserve validity. Further,
the modal axioms of CEq are valid and the rule also preserves validity, therefore
CEq is sound for this matrix.

The sets {+1,−1} and {+2,−2} are both closed under all the operations cor-
responding to the connectives. Therefore, by induction, if for all atoms p in a
formulaA, v(p) ∈ {+1,−1}, then v(A) ∈ {+1,−1}, and similarly for {+2,−2}.
If v(A) ∈ {+1,−1} and v(B) ∈ {+2,−2}, then v(A → B) is not designated.
IfA and B are assumed to have no atoms in common, then we can construct an
assignment v such that v(A) ∈ {+1,−1} and v(B) ∈ {+2,−2}, which then suf-
fices for v(A→ B) not being designated. Therefore,A→ B is not a theorem of
CEq.

As a corollary, this gives an alternative proof that Eq has the variable-sharing
property.

Corollary 4.6. Eq enjoys the variable-sharing property.

Proof. CEq enjoys the variable-sharing property. As Eq is a sublogic of CEq and
the variable-sharing property is preserved to sublogics, Eq enjoys it as well.

The introduction of Mares-Meyer modal frames andMMR-frames is in part a
technical device to permit an axiomatization and proof of Completeness forCEq.
Nonetheless, we can make a few comments on the Mares-Meyer modal frames.

The accessibility relation of the Mares-Meyer modal frames gives a partial de-
scription of indistinguishability, in the sense that one can define an equivalence
relation from it. The description is partial in the sense that Sab on its own does
not say that the agent cannot distinguish a and b, but instead requires the addi-
tion of Sa∗b∗ to conclude that the agent cannot distinguish a and b.

Next, we will comment on the relation between the class of Mares-Meyer modal
frames and the class of RS5-frames. Both are subclasses of a more general class,
namely the frames obeying the postulates.

• If Sbc and a ≤ b, then Sac.

• Saa.

• If Sab and Sbc, then Sac.

• If Sab, then Sb∗a∗.
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These are frames for the logic R.T4B, which includes (Mono) and (Agg). The
RS5-frames add additional postulates to ensure the validity of (K) and (Nec),
while the Mares-Meyer modal frames add a postulate for the validity of (MC).
One could add (MC) to RS5, adding the corresponding postulate (MM2) to the
RS5-frames to maintain Soundness and Completeness. Similarly, one could add
postulates for (K) and (Nec) to the Mares-Meyer modal frames, which would
transfer to the coordinated equivalence frames, by a result of Mares (1994). I have
not added the extra conditions, because they would greatly restrict the equiv-
alence relations available on the coordinated equivalence frames, which would
undermine the intuitive interpretation of the equivalence relations as encoding
indistinguishability.

Despite these connections, one should not think that Eq and CEq are sublog-
ics of RS5. There is a theorem of Eq that is not a theorem of RS5: 2(2A∨ B) →
(2A∨ 2B).20

Theorem 11. The formula 2(2A∨ B) → (2A∨ 2B) is a theorem of Eq.

Proof. LetM be an equivalence model. Suppose a  2(2A ∨ B). Suppose that
a 6 2A ∨ 2B. It follows that a 6 2A and a 6 2B. It follows that there are
b, c ∈ [a] such that b 6 A and c 6 B. From the initial assumption, it follows
that for all d ∈ [a], d  2A∨B, so c  2A∨B. This implies c  2A, which in
turn implies that for all e ∈ [c], e  A. As [c] = [a], it follows that b  A, which
is a contradiction. Therefore, a  2A∨ 2B, as desired.

There are instances of the scheme 2(2A ∨ B) → (2A ∨ 2B) that are not
theorems of RS5.

Theorem 12. 2(2p∨ q) → (2p∨ 2q) is not a theorem of RS5.

Proof. The matrix in table 4 was found by MaGIC provides to provide a counterex-
ample.21 The set of designated elements is {2, 3, 4, 5}. A counterexample is any
valuation that assigns a formula a value outside of the set of designated values.

To obtain the counterexample, we use a valuation v assigning v(p) = 2 and
v(q) = 1. It follows that v(2(2p∨q)) = 3 and v(2p∨2q) = 2, which suffices
for v(2(2p ∨ q) → (2p ∨ 2q)) = 0. As all the axioms of RS5 are designated

20This formula is discussed by Ono (1977) in the context of intuitionistic versions of S5.
21John Slaney’s program MaGIC can be found at http://users.cecs.anu.edu.au/~jks/

magic.html.
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5

4 3

2 1

0

→ 0 1 2 3 4 5 ¬ 2
0 5 5 5 5 5 5 5 0

1 0 2 0 4 0 5 4 0

2 0 1 2 3 4 5 3 2

3 0 0 0 2 0 5 2 3

4 0 0 0 1 2 5 1 2

5 0 0 0 0 0 5 0 5

Table 4: Six-element MaGIC counterexample

on this matrix and the rules preserve designation, it follows that 2(2p ∨ q) →
(2p∨ 2q) is not a theorem.

There are theorems of RS5 that are not theorems of Eq, an example of which
we can identify with an application of the rule (Nec).

Lemma 4.8. The formula 2(p→ p) is not a theorem of CEq.

Proof. This is proved by noting that the frame used in the proof of lemma 4.4 is,
in fact, a coordinated equivalence frame.

Corollary 4.7. The logic RS5 is incomparable with Eq and with CEq.

While RS5 and the equivalence logics are incomparable, it is worth noting a
logic that extends them all. Let RS5MC be the logic RS5 extended with (MC).

Theorem 13. The logic RS5MC properly extends CEq.

Proof. All the axioms of HCEq are axioms of RS5MC, and they share the same
rules. The containment is proper because the rule (Nec) permits the derivation
of 2(p→ p), which is not a theorem of CEq by lemma 4.8.

The relationships between four modal logics discussed in this paper are sum-
marized in table 5. As a complete axiomatization of Eq is not yet known, so the
axioms and rules listed here should not be taken as exhaustive. Let us turn to
some concluding discussion of these epistemic logics.
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Name Modal principle Eq CEq RS5 RS5MC
(Agg) (2A∧ 2B) → 2(A∧ B) X X X X
(K) 2(A→ B) → (2A→ 2B) X X
(T) 2A→ A X X X X
(4) 2A→ 22A X X X X
(B) A→ 2¬2¬A X X X
(5) ¬2A→ 2¬2A X X X
(MC) 2(A∨ B) → (2A∨ ¬2¬B) X X

2(2A∨ B) → (2A∨ 2B) X X X
(Nec) A⇒ 2A X X
(Mono) A→ B⇒ 2A→ 2B X X X X

Table 5: Modal principles of the different logics

5 Discussion
So far, I have introduced three main epistemic relevant logics, RS5, Eq, and CEq,
with a fourth logic, RS5MC, introduced as a logic extending all of them. Both
equivalence frames and coordinated equivalence frames utilize the indistinguisha-
bility approach to knowledge. The coordinated equivalence frames validate some
of the more controversial principles, (B)and (5). These are not valid over the class
equivalence frames.

From the point of view of the objections to S5 raised in section 2, Eq appears
to be the clear winner, avoiding (B) and (5), as well as (Nec). None of the log-
ics canvassed avoid the Williamsonian objections to positive introspection, (4).22

Indeed, it appears difficult to avoid (4) while using frames with equivalence re-
lations. If one is less moved by the objections to negative introspection, perhaps
the more S5-like logics, such as CEq or RS5MC would be more appealing.

While in some ways similar to S5, these epistemic logics offer distinctive re-
sponses to issues of logical omniscience. Logical omniscience comprises a cluster
of issues regarding ways in which an agent’s knowledge is closed under various
logical operations. The issues do not all stand or fall together in the current set-

22It is worth noting that one can, potentially, hold on to (Nec) while avoiding the Williamso-
nian objections. The reason is that in the present setting, the validity of 2A does not generally
implyA→ 2A. There are plausibly other reasons to avoid (Nec), discussed in this section, but it
may be worth investigating how strong a logic with (Nec) can be while avoiding the Williamso-
nian objection.
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ting.
Both the classes of equivalence frames and of coordinated equivalence frames

invalidate (K) and (Nec). As a consequence, the sorts of agents they model do
not automatically know all logical truths. Further, knowledge is not closed un-
der implications in one sense, namely the sense of the (K) axiom 2(A → B) →
(2A → 2B). There are related senses in which knowledge is closed, such as
(2(A → B) ∧ 2A) → 2B, which is is valid.23 Since (Mono) is built in to this
approach to epistemic relevant logics, knowledge will be closed under logically
valid implications, although not merely assumed implications. As a consequence
of closure under (Mono), if an agent knows anything, they will know claims of
arbitrarily high complexity, measured in terms of the number of logical connec-
tives. Further, agents will know things involving arbitrarily many propositional
variables. Thus, there is no sort of limitations in place on the basis of concepts or
subject matters involved.24

Even though knowledge in these epistemic logics is closed under valid impli-
cations, this does not mean that agents know all logical truths. In fact, they can
know some logical truths without knowing all of them. Further, they can know
some classical tautologies without knowing all classical tautologies. Knowledge
being closed under valid implications does not have as large negative effects as
the knowledge of S5 being closed under valid implications. Even when knowl-
edge is closed under valid relevant implications, there are still many logical truths
that can remain unknown to the agents. In fact, agents can remain wholly igno-
rant of logical truths.

Adapting definitions from Williamson (2006), one can understand a formula
context C to be hyperintensional iff there are formulasA and B for which the im-
plication 2(A ↔ B) → 2(C(A) ↔ C(B)) is not valid, where A ↔ B is de-
fined as (A → B) ∧ (B → A). Perhaps surprisingly, knowledge operators in
all the epistemic relevant logics under consideration in the previous section ex-
hibit a degree a hyperintensionality, which follows from the results of Standefer
(2023a).25, This means that equivalences that are assumed known will not always

23Most of the features of the epistemic logics discussed in this paper do not depend on the
choice ofR as the base logic. In fact, the results carry over to all the other standard relevant logics.
One exception is the validity of (2(A → B) ∧ 2A) → 2B, which does depend on the choice of
R. If this seems like too much of a cost, it can be avoided by working with a weaker base logic.

24See Hawke et al. (2020) for discussion of subject matter and knowledge, and see Ferguson
(2017) for an overview of conceptivist logics.

25See Berto and Nolan (2021) and Berto and Jago (2019) for more on hyperintensionality, and
see Sedlár (2019) for a general framework for hyperintensional logics.
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permit substitution into knowledge contexts. As a consequence, agents can know
certain equivalences but this need not imply that their knowledge will be closed
under substitution using those known equivalences. The logics are congruential,
meaning they are closed under the rule (Cong), A ↔ B ⇒ C(A) ↔ C(B).
They are, therefore, not hyperintensional in the preferred sense of Odintsov and
Wansing (2021).

To summarize, there are some ways in which knowledge in relevant epistemic
logics runs into issues of logical omniscience and there are some ways in which
it avoids issues of logical omniscience. To be clear, knowledge and knowers in
all the epistemic logics under consideration is highly idealized. That idealization
will bring with it some amount of logical omniscience, but it seems less bad than
in the classical setting, because logical implication and equivalence are harder
to come by in the relevant logical setting than in the classical one. One can, of
course, combine these epistemic logics with modal operators interpreted using
other techniques, such as justifications or other modal operators.26 These addi-
tional techniques for interpreting modal operators would provide further alter-
native responses to issues of logical omniscience.

Importantly, since equivalence classes are used in the frames forEq andCEq,
one can make more or less direct contact with the extant work on common knowl-
edge in classical partition frames, once one makes the straightforward extension
to multi-agent systems where each agent is represented by their own equiva-
lence relation which is used to interpret a distinct knowledge operator. There has
been recent, pioneering work on common knowledge in relevant epistemic log-
ics by Punčochář et al. (2023), but that work does not use equivalence relations
for its accessibility relation, so it arguably has a different conception of knowl-
edge. Given the importance of common knowledge in formal epistemology and
epistemic logic, further investigation of this topic seems promising.

To end, I will highlight a lingering open question.

Open Can the logic Eq be axiomatized in the vocabulary {→,¬,∧,∨,2}? If so,
what axioms need to be added? If not, how could one show that?

It appears that one can axiomatize the logic if one adds Boolean negation (−) to
the language, with the verification clause

• a  −B iff a 6 B,
26For relevant logics of justifications, see Savić and Studer (2019) and Standefer (2019; 2022a;

2023c). For other modal operators interpreted using neighborhoods, see, for example, Standefer
(2019) or Ferenz and Tedder (2022).
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but there are philosophical reasons not to do that. Among other things, the variable-
sharing property is violated when Boolean negation is added. Further, the at-
tractive features of the logic Eq fall away in the presence of Boolean negation,
e.g. (B) becomes valid when it is formulated using − rather than ¬, namely as
A → 2 − 2 − A rather thanA → 2¬2¬A. For these reasons, an axiomatiza-
tion that does not rely on Boolean negation would be preferable.
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